Assessing the impact of COVID-19 on oncology clinical trials – application of the estimand framework

Kaspar Rufibach
Methods, Collaboration & Outreach Group, Department of Biostatistics, Roche Basel
PSI Conference Webinar: Impact of COVID-19 to estimands
11th June 2020

COVID-19 pandemic: new and evolving opinion may need refining over time.

Endpoint: overall survival in superiority trial.
This talk

This talk

- Consensus opinion of industry working group “estimands in oncology”: www.oncoestimand.org.
This talk

- **Consensus opinion** of industry working group “estimands in oncology”: www.oncoestimand.org.
- COVID-19 pandemic: new and evolving ⇒ opinion may need refining over time.
This talk

- **Consensus opinion** of industry working group “estimands in oncology”: www.oncoestimand.org.

- COVID-19 pandemic: new and evolving ⇒ opinion may need refining over time.

Endpoint: **overall survival** in **superiority** trial.
How does COVID-19 change pre-pandemic clinical trial objective?
How does COVID-19 change pre-pandemic clinical trial objective?

It does not!
Clinical trial objective

World without ongoing COVID-19 pandemic:
Clinical trial objective

World without ongoing COVID-19 pandemic:

Disease **contained**:

- Patients do not experience severe complications due to virus.
- Spread of virus limited.
- Therapy available.
Clinical trial objective

World without ongoing COVID-19 pandemic:

1. Disease *contained*:
 - Patients do not experience severe complications due to virus.
 - Spread of virus limited.
 - Therapy available.

2. No disruption of healthcare systems:
 - Patients access to routine standard of care.
 - Proper disease follow-up.
Clinical trial objective

World without ongoing COVID-19 pandemic:

1. Disease **contained**:
 - Patients do not experience severe complications due to virus.
 - Spread of virus limited.
 - Therapy available.

2. **No disruption** of healthcare systems:
 - Patients access to routine standard of care.
 - Proper disease follow-up.

Key assumptions:
Clinical trial objective

World without ongoing COVID-19 pandemic:

1. **Disease contained:**
 - Patients do not experience severe complications due to virus.
 - Spread of virus limited.
 - Therapy available.

2. **No disruption** of healthcare systems:
 - Patients access to routine standard of care.
 - Proper disease follow-up.

Key assumptions:

- Trials started before pandemic: designed to inform clinical practice in a world without pandemic.
Clinical trial objective

World without ongoing COVID-19 pandemic:

1. Disease *contained*:
 - Patients do not experience severe complications due to virus.
 - Spread of virus limited.
 - Therapy available.

2. No disruption of healthcare systems:
 - Patients access to routine standard of care.
 - Proper disease follow-up.

Key assumptions:

- Trials started before pandemic: designed to inform clinical practice in a world without pandemic.
- Pandemic will eventually end.
Clinical trial objective

World without ongoing COVID-19 pandemic:

1. **Disease contained:**
 - Patients do not experience severe complications due to virus.
 - Spread of virus limited.
 - Therapy available.

2. **No disruption** of healthcare systems:
 - Patients access to routine standard of care.
 - Proper disease follow-up.

Key assumptions:
- Trials started before pandemic: designed to inform clinical practice in a world without pandemic.
- Pandemic will eventually end.

Clinical trial objective pre-pandemic = post-pandemic.
Data collected and trial results useful for informing clinical practice in a world without COVID-19 pandemic?
Data collected and trial results useful for informing clinical practice in a world without COVID-19 pandemic?

Estimate from initially planned analysis still provide answer to clinical trial objective?
If not:

Clarify primary estimand.
Modify estimator.
Add sensitivity analyses.
Introduce supplementary estimands.

If you update estimand:
Effect size?
Sample size?
Missing data handling?
If not:

- Clarify primary estimand.
If not:

- Clarify primary estimand.
- Modify estimator.
If not:

- Clarify primary estimand.
- Modify estimator.
- Add sensitivity analyses.
If not:

- Clarify primary estimand.
- Modify estimator.
- Add sensitivity analyses.
- Introduce supplementary estimands.
If not:

- Clarify primary estimand.
- Modify estimator.
- Add sensitivity analyses.
- Introduce supplementary estimands.

If you update estimand:
If not:

- Clarify primary estimand.
- Modify estimator.
- Add sensitivity analyses.
- Introduce supplementary estimands.

If you update estimand:

- Effect size?
If not:

- Clarify primary estimand.
- Modify estimator.
- Add sensitivity analyses.
- Introduce supplementary estimands.

If you update estimand:

- Effect size?
- Sample size?
If not:

- Clarify primary estimand.
- Modify estimator.
- Add sensitivity analyses.
- Introduce supplementary estimands.

If you update estimand:

- Effect size?
- Sample size?
- Missing data handling?
ESTIMAND
COVID-19 IMPACT ASSESSMENT

VARIABLE
The variable (or endpoint) to be obtained for each patient.
Q: Does the current endpoint reflect the treatment effect in the original scientific objective?

POPLATION
The population of patients targeted by the clinical question.
Q: Are the enrolled patients representative of the target population?

TREATMENT
The treatment condition of interest.
Q: Are the treatment conditions (e.g. non-compliance, drug discontinuation, subsequent therapy) representative of what would have been administered pre-COVID-19?

INTERCURRENT EVENTS (ICEs)
Other ICEs not already addressed by treatment, population and variable, and how they are handled.
Q: Can the original clinical trial objective be addressed without defining new strategies for ICEs related to COVID-19? (e.g. apply pre-specified rules for discontinuations to discontinuations due to COVID-19)

SUMMARY
A population-level summary for the variable which provides a basis for treatment comparison.
Q: Is the summary measure still interpretable?
Direct vs. indirect impact of pandemic

Direct:
- Treatment interruption or discontinuation due to infection.
- Additional therapies to treat COVID-19.
- Death due to COVID-19.

Indirect:
- Overwhelmed healthcare system.
- Lock-down.
- Treatment interruption or discontinuation due to logistic reasons, patient or physician decision.
Direct vs. indirect impact of pandemic

Direct:

- Treatment interruption or discontinuation due to infection.
- Additional therapies to treat COVID-19.
- Death due to COVID-19.

Indirect:

- Overwhelmed healthcare system.
- Lock-down.
- Treatment interruption or discontinuation due to logistic reasons, patient or physician decision.
Direct vs. indirect impact of pandemic

Direct:
- Treatment interruption or discontinuation due to *infection*.
Direct vs. indirect impact of pandemic

Direct:
- Treatment interruption or discontinuation due to *infection*.
- Additional therapies to treat COVID-19.
Direct vs. indirect impact of pandemic

Direct:
- Treatment interruption or discontinuation due to *infection*.
- Additional therapies to treat COVID-19.
- Death due to COVID-19.
Direct vs. indirect impact of pandemic

Direct:

- Treatment interruption or discontinuation due to *infection*.
- Additional therapies to treat COVID-19.
- Death due to COVID-19.

Indirect:
Direct vs. indirect impact of pandemic

Direct:
- Treatment interruption or discontinuation due to *infection*.
- Additional therapies to treat COVID-19.
- Death due to COVID-19.

Indirect:
- Overwhelmed healthcare system.
Direct vs. indirect impact of pandemic

Direct:
- Treatment interruption or discontinuation due to infection.
- Additional therapies to treat COVID-19.
- Death due to COVID-19.

Indirect:
- Overwhelmed healthcare system.
- Lock-down.
Direct vs. indirect impact of pandemic

Direct:
- Treatment interruption or discontinuation due to *infection*.
- Additional therapies to treat COVID-19.
- Death due to COVID-19.

Indirect:
- Overwhelmed healthcare system.
- Lock-down.
- Treatment interruption or discontinuation due to *logistic reasons, patient or physician decision*.
Death due to COVID-19
Death due to COVID-19

Direct impact
Death due to COVID-19
Death due to COVID-19

- **Composite**: count as death.
Death due to COVID-19

- **Composite**: count as death.
- **Hypothetical**: do not expect COVID-19 related deaths in a post-pandemic world.
Discontinuation from treatment not related to COVID-19 infection
Discontinuation from treatment not related to COVID-19 infection

Indirect impact
Non-related discontinuation

Oncology trials: any discontinuation ⇒ treatment policy, because difficult to exclude relatedness to disease and/or treatment.
Non-related discontinuation

Oncology trials: any discontinuation ⇒ treatment policy, because difficult to exclude relatedness to disease and/or treatment.

Unrelated discontinuation:
Non-related discontinuation

Oncology trials: any discontinuation ⇒ treatment policy, because difficult to exclude relatedness to disease and/or treatment.

Unrelated discontinuation:
- Patients’ or physicians’ decision.
Non-related discontinuation

Oncology trials: any discontinuation ⇒ treatment policy, because difficult to exclude relatedness to disease and/or treatment.

Unrelated discontinuation:
- Patients’ or physicians’ decision.
- Unable to travel.
Non-related discontinuation

Oncology trials: any discontinuation ⇒ treatment policy, because difficult to exclude relatedness to disease and/or treatment.

Unrelated discontinuation:

- Patients’ or physicians’ decision.
- Unable to travel.
- Avoid hospital.
Non-related discontinuation

Oncology trials: any discontinuation \Rightarrow treatment policy, because difficult to exclude relatedness to disease and/or treatment.

Unrelated discontinuation:
- Patients’ or physicians’ decision.
- Unable to travel.
- Avoid hospital.

Data after discontinuation:
Non-related discontinuation

Oncology trials: any discontinuation ⇒ treatment policy, because difficult to exclude relatedness to disease and/or treatment.

Unrelated discontinuation:

- Patients’ or physicians’ decision.
- Unable to travel.
- Avoid hospital.

Data after discontinuation:

- Start of new anticancer therapy: event in many settings.
Non-related discontinuation

Oncology trials: any discontinuation ⇒ treatment policy, because difficult to exclude relatedness to disease and/or treatment.

Unrelated discontinuation:

- Patients’ or physicians’ decision.
- Unable to travel.
- Avoid hospital.

Data after discontinuation:

- Start of new anticancer therapy: event in many settings.
- Unlikely to reflect patient’s journey in world without COVID-19 pandemic.
Non-related discontinuation

Oncology trials: any discontinuation ⇒ treatment policy, because difficult to exclude relatedness to disease and/or treatment.

Unrelated discontinuation:

- Patients’ or physicians’ decision.
- Unable to travel.
- Avoid hospital.

Data after discontinuation:

- Start of new anticancer therapy: event in many settings.
- Unlikely to reflect patient’s journey in world without COVID-19 pandemic.

Hypothetical strategy.
Estimation

Estimation of hypothetical estimand: often not obvious, but feasible.

Estimating effect in patients infected by COVID-19 vs. patients not infected by COVID-19:

Infection = ICE ⇒ simple subsetting breaks randomization ⇒ validity of causal statements unclear.

Estimate via principal stratification.
COVID-19 death competing risk? Meyer et al. (2020): patients not at risk for that cause from randomization on.
COVID-19 death competing risk? Meyer et al. (2020): patients not at risk for that cause from randomization on.

Estimation of hypothetical estimand: often not obvious, but feasible.
COVID-19 death **competing risk**? Meyer et al. (2020): patients not at risk for that cause from randomization on.

Estimation of hypothetical estimand: often not obvious, but feasible.

Estimating effect in patients infected by COVID-19 vs. patients not infected by COVID-19:
COVID-19 death competing risk? Meyer et al. (2020): patients not at risk for that cause from randomization on.

Estimation of hypothetical estimand: often not obvious, but feasible.

Estimating effect in patients infected by COVID-19 vs. patients not infected by COVID-19:

- **Infection = ICE** ⇒ simple subsetting breaks randomization ⇒ validity of causal statements unclear.
Estimation

- COVID-19 death **competing risk**? Meyer et al. (2020): patients not at risk for that cause from randomization on.
- Estimation of hypothetical estimand: often not obvious, but feasible.
- Estimating effect in patients infected by COVID-19 vs. patients not infected by COVID-19:
 - Infection = ICE \Rightarrow simple subsetting breaks randomization \Rightarrow validity of causal statements unclear.
 - Estimate via **principal stratification**.
Additional considerations in paper

- Non-proportional hazards.
- Missing data: capture reasons of missingness.
- iDMC: Primary purpose: issue recommendations on safety of patients and interim analyses for trials. Impact assessment of pandemic feasible using blinded data ⇒ iDMC not needed.
- Non-inferiority: usual considerations apply, nothing specific to pandemic situation.
Additional considerations in paper

- Non-proportional hazards.

iDMC: Primary purpose: issue recommendations on safety of patients and interim analyses for trials ⇒ unchanged by pandemic. Impact assessment of pandemic feasible using blinded data ⇒ iDMC not needed.

Response, duration of response.

Non-inferiority: usual considerations apply, nothing specific to pandemic situation.
Additional considerations in paper

- **Non-proportional** hazards.
- **Missing data**: capture reasons of missingness.

iDMC: primary purpose: issue recommendations on safety of patients and interim analyses for trials ⇒ unchanged by pandemic. Impact assessment of pandemic feasible using blinded data ⇒ iDMC not needed.

Response, duration of response.

Non-inferiority: usual considerations apply, nothing specific to pandemic situation.
Additional considerations in paper

- **Non-proportional** hazards.
- **Missing data**: capture reasons of missingness.
- iDMC: primary purpose is to issue recommendations on safety of patients and interim analyses for trials, which are not affected by the pandemic. Impact assessment of the pandemic can be feasible using blinded data, hence iDMC is not needed. Response, duration of response. Non-inferiority: usual considerations apply, nothing specific to pandemic situation.
Additional considerations in paper

- **Non-proportional** hazards.
- **Missing data**: capture reasons of missingness.
- **iDMC**:
 - Primary purpose: issue recommendations on safety of patients and interim analyses for trials ⇒ unchanged by pandemic.
Additional considerations in paper

- **Non-proportional** hazards.

- **Missing data**: capture reasons of missingness.

- **iDMC**:
 - Primary purpose: issue recommendations on safety of patients and interim analyses for trials ⇒ unchanged by pandemic.
 - Impact assessment of pandemic feasible using **blinded** data ⇒ iDMC not needed.
Additional considerations in paper

- **Non-proportional** hazards.
- **Missing data**: capture reasons of missingness.
- **iDMC**:
 - Primary purpose: issue recommendations on safety of patients and interim analyses for trials ⇒ unchanged by pandemic.
 - Impact assessment of pandemic feasible using **blinded** data ⇒ iDMC not needed.
- Response, duration of response.
Additional considerations in paper

- **Non-proportional** hazards.
- **Missing data**: capture reasons of missingness.
- **iDMC**:
 - Primary purpose: issue recommendations on safety of patients and interim analyses for trials ⇒ unchanged by pandemic.
 - Impact assessment of pandemic feasible using **blinded** data ⇒ iDMC not needed.
- Response, duration of response.
- **Non-inferiority**: usual considerations apply, nothing specific to pandemic situation.
Wrap-up

Pragmatism: We document changes to consider. But: Estimate from initially planned analysis may still provide “right” answer. Nothing relating to estimand and estimation necessarily needs to change!

Key factors to consider choosing the strategy:
- Relationship of intercurrent event to disease or treatment.
- Interpretability of data after intercurrent event.

Hypothetical strategy: reasonable for events caused by healthcare system disruption.

Principal stratification: potentially valuable to assess treatment effect in patients who would not experience severe complications of COVID-19 infections.

Paper illustrates power of purpose-built networks.
Wrap-up

Pragmatism: We document changes to consider. But: Estimate from initially planned analysis may still provide “right” answer. Nothing relating to estimand and estimation necessarily needs to change!

Key factors to consider choosing the strategy:

- Relationship of intercurrent event to disease or treatment.
- Interpretability of data after intercurrent event.

Hypothetical strategy: reasonable for events caused by healthcare system disruption.

Principal stratification: potentially valuable to assess treatment effect in patients who would not experience severe complications of COVID-19 infections.

Paper illustrates power of purpose-built networks.
Wrap-up

- **Estimand framework ideal to assess impact of pandemic.** Allows for *structured* assessment of impact.
- **Pragmatism:** We document changes to consider. But:
Wrap-up

- **Estimand framework ideal to assess impact of pandemic.** Allows for *structured* assessment of impact.
- **Pragmatism:** We document changes to consider. But:
 - Estimate from initially planned analysis may still provide “right” answer.
Wrap-up

- **Estimand framework ideal to assess impact of pandemic.** Allows for **structured** assessment of impact.

- **Pragmatism:** We document changes to consider. But:
 - Estimate from initially planned analysis may still provide “right” answer.
 - **Nothing** relating to estimand and estimation necessarily needs to change!
Wrap-up

- **Estimand framework ideal to assess impact of pandemic.** Allows for **structured** assessment of impact.
- **Pragmatism:** We document changes to consider. But:
 - Estimate from initially planned analysis may still provide “right” answer.
 - **Nothing** relating to estimand and estimation necessarily needs to change!
- Key factors to consider choosing the strategy:
Wrap-up

- **Estimand framework ideal to assess impact of pandemic.** Allows for *structured* assessment of impact.

- **Pragmatism:** We document changes to consider. But:
 - Estimate from initially planned analysis may still provide “right” answer.
 - **Nothing** relating to estimand and estimation necessarily needs to change!

- Key factors to consider choosing the strategy:
 - **Relationship** of intercurrent event to disease or treatment.
Wrap-up

- **Estimand framework ideal to assess impact of pandemic.** Allows for **structured** assessment of impact.

- **Pragmatism:** We document changes to consider. But:
 - Estimate from initially planned analysis may still provide “right” answer.
 - **Nothing** relating to estimand and estimation necessarily needs to change!

- Key factors to consider choosing the strategy:
 - **Relationship** of intercurrent event to disease or treatment.
 - **Interpretability** of data after intercurrent event.
Wrap-up

- **Estimand framework ideal to assess impact of pandemic.** Allows for **structured** assessment of impact.

- **Pragmatism:** We document changes to consider. But:
 - Estimate from initially planned analysis may still provide “right” answer.
 - **Nothing** relating to estimand and estimation necessarily needs to change!

- Key factors to consider choosing the strategy:
 - **Relationship** of intercurrent event to disease or treatment.
 - **Interpretability** of data after intercurrent event.

- Hypothetical strategy: reasonable for events caused by healthcare system disruption.
Wrap-up

- **Estimand framework ideal to assess impact of pandemic.** Allows for **structured** assessment of impact.

- **Pragmatism:** We document changes to consider. But:
 - Estimate from initially planned analysis may still provide “right” answer.
 - **Nothing** relating to estimand and estimation necessarily needs to change!

- Key factors to consider choosing the strategy:
 - **Relationship** of intercurrent event to disease or treatment.
 - **Interpretability** of data after intercurrent event.

- Hypothetical strategy: reasonable for events caused by healthcare system disruption.

- Principal stratification: potentially valuable to assess treatment effect in patients who would not experience severe complications of COVID-19 infections.
Wrap-up

- **Estimand framework ideal to assess impact of pandemic.** Allows for **structured** assessment of impact.

- **Pragmatism:** We document changes to consider. But:
 - Estimate from initially planned analysis may still provide “right” answer.
 - **Nothing** relating to estimand and estimation necessarily needs to change!

- Key factors to consider choosing the strategy:
 - **Relationship** of intercurrent event to disease or treatment.
 - **Interpretability** of data after intercurrent event.

- Hypothetical strategy: reasonable for events caused by healthcare system disruption.

- Principal stratification: potentially valuable to assess treatment effect in patients who would not experience severe complications of COVID-19 infections.

Paper illustrates power of purpose-built networks.
Joint EFSP1 / BBS Seminar:
Estimands addendum is final:
Anything new for oncology?

Basel Biometrics Section webinar
Basel, 29th June 2020

Kaspar Rufibach (Roche, member of BBS board)
Welcome and scene setting

Regulator’s view (Anja Schiel, Norwegian Medicines Agency)
Experience with the estimand framework in oncology

Renaud Capdeville (Novartis), Tina Nielsen (Roche)
Challenges and open questions in hematology: RATIFY and GALLIUM

Break

Hannes Buchner (Staburo) & Ingolf Griebsch (Boehringer Ingelheim)
Treatment switching: challenges, estimands, and estimators

Stefan Englert (AbbVie)
Commentary on previous talks taking COVID-19 into account

Break

Panel discussion
(all speakers + Rob Hemmings from Consilium, Michael Wenger from Novartis)
Estimands – after first experiences anything new for oncology? If at all, what does it add?)
Industry working group on estimands in oncology:

- Founded February 2018.
- European special interest group “Estimands in oncology”, sponsored by PSI and EFSPI.
- ASA scientific working group of ASA biopharmaceutical section.
- 38 members representing 22 companies.
- Regularly interacts with 7 health authorities.

www.oncoestimand.org
Thank you for your attention.

kaspar.rufibach@roche.com
http://www.kasparrufibach.ch
 twitter numbersman77
 github numbersman77
