

Estimands and Safety in Oncology Clinical Trials

Jonathan Siegel, Bayer Janet Wittes, Wittes LLC Brenda Crowe, Lilly Pedro Lopez-Romero, Novartis Natalia Kan-Dobrosky, Abbvie

The Pharmaceutical Industry Working Group on Estimands in Oncology & PHUSE Safety Task Force

> Joint Statistical Meetings August 6, 2023

Science For A Better Life

Disclaimer

The views presented in this presentation are **solely those of the authors,** and do not necessarily represent the views of the Pharmaceutical Industry Working Group on Estimands in Oncology, PHUSE, the authors' employers, or any other organization.

Outline

➢ Purpose Safety Task Force \succ The Cinderella of biostatistics? Safety issues >Oncology-specific issues \blacktriangleright Problems with while-on-treatment strategies Case Study 1: Schlumberger et al., 2019 Case Study 2: Weber et al., 2009 ➤ Case study discussion Summary and conclusions

Purpose

- This presentation assumes general familiarity with the ICH E9 (R1) guidance.
- The purpose of our task force and this presentation is not to reformulate existing activities into new terminology.
- ➢ Rather, it is to attempt to apply the estimands framework to think more carefully about safety and formulate better and more fit-for-purpose (Deming 1986) clinical questions that can be answered more reliably.
- >This, as we've found, is a very hard task.

Safety Task Force

- The Safety Task Force is a joint venture of the Pharmaceutical Industry Working Group on Estimands in Oncology (EIO) and PHUSE.
- EIO is a group of 97 industry statisticians and clinicians (mostly statisticians) from the US, Europe, and Asia.
 - ➢ From 47 companies.
 - > Active regulatory participants.
 - Organized in 2018 to discuss the implications of ICH E9 (R1).
 - Affiliated with ASA-BIOP as the Estimands in Oncology Scientific Working Group
 - > Also affiliated with EFSPI as a Scientific Interest Group.
- PHUSE is a global healthcare data science community organized in 2004 to provide a collaborative voice for data science professionals in the pharmaceutical industry.

Safety Task Force Progress

- The Safety Task Force was formed in March 2022 out of a recognition by EOI leadership that safety had not gotten sufficient attention.
 - > None of the EIO members at that time were safety experts.
 - EIO partnered with PHUSE to create the task force and bring in analytics and safety experts.
- We completed a literature review including lectures by paper authors early this year, and began working on papers.
 - > We have made less progress than expected.
- Safety, particularly in oncology, is hard.
 - Having safety experts learn about estimands and estimands experts learn about safety has involved a steep learning curve for both.
- Accordingly, this presentation of our preliminary work presents more questions and issues than answers.

The Cinderella of Biostatistics?

- On July 23, 2020, EFSPI had a session entitled "Safety Analyses: The Cinderella of Biostatistics?"
- The ICH E9 (R1) guidance refers to obtaining a clear description of the benefits and risks of a treatment. (Schuler, 2020)
- Yet safety rarely gets as much attention as efficacy in e.g. ASCO presentations. (Kubler, 2020).
- A great deal more is published in clinically-focused statistics journals on efficacy than on safety. (Kubler, 2020)
- Statisticians who rise to department heads or lead methodology groups in pharma companies are generally efficacy experts. (Kubler, 2020)
- Clinical trial safety reporting often consists of standardized incidences of AEs, labs, etc. -- perfunctory, routine, and descriptive.

Joint Statistical Meetings -- Toronto --- August 6, 2023 -- - Page 7

The Cinderella of Biostatistics Cont.

 Assessments of causality tend to be clinically focused.
 Clinical judgment attributing individual events in individual patients to treatment based on patient narrative.

- Use of statistical methods in assessing causality at the clinical trial level remains limited.
- Little thought tends to be given to exactly what questions safety reporting and analyses are intended to answer.

Safety Issues: Difference in posited causality

> Both efficacy and safety can involve the prevention of untoward events.

- > Efficacy events posited as effects of the underlying disease.
- Safety events are posited as effects of the treatment.
- > The difference in causality inverts conservativism.
 - > Placebo is the quintessential inefficacious drug but the quintessential safe one.
 - Ignoring refusal of/withdrawal from treatment tends to reduce apparent efficacy, but increase apparent safety.
- ➤ Has an analogy to non-inferiority.
 - > Both involve establishing an absence of a meaningful difference.
 - Both require care in distinguishing absence of evidence from evidence of absence.

Three kinds of causality

- Consideration of causality requires careful definition of what type of causality is involved.
- Safety evaluations may involve one of three kinds of causality.
 - Attribution of an individual safety event in an individual treatment to a specific drug regimen or drug.
 - > Estimation of drug safety effect for a population (single-arm).
 - Comparison of safety across treatments.
- The 2012 FDA Safety Reporting Requirements moved responsibility for determining causality in expedited reporting from the investigator (per ICH E2A) to the sponsor.
 - Causality has nonetheless largely been determined by clinical judgment and descriptive statistical methods.
- The estimands framework potentially opens the door to considering more inferential statistical assessments of causality.

Safety Issues cont.

- Exploratory character. While specific safety objectives can be important parts of oncology trials and development programs, safety as a whole retains an exploratory character.
 - > Previously unknown safety effects could be observed at any trial phase.
 - A clinical trial safety evaluation cannot be limited to focus on specific estimands, but must also look for whatever may be out there.

> Discrete clinic visits. Most safety events require clinic visits to observe.

- It is often infeasible to continue the physical exams, labs, etc. required for comprehensive safety much beyond treatment withdrawal.
 - > More difficult than just limited efficacy assessments (e.g. imaging).
- *Rare events*. Important safety events may be too infrequent to detect reliably within the scope of a clinical trial.

Oncology-Specific Issues

- Late-stage cancer has high morbidity and mortality.
 - Deaths are common events, and it can be difficult to distinguish death caused by treatment toxicity from death caused by the underlying disease.
- Cancer treatments are rarely curative. Most cancer-efficacy trials are designed to assess prolongation of progression and/or survival.
- Cancer treatments are often highly toxic.
 - Phase 1 studies are generally conducted in end-line patients rather than healthy volunteers.
 - High general toxicity can make a safer treatment more valuable, which should increase the importance of safety evaluation.

Oncology-Specific Issues cont.

Randomization and blinding can be difficult.

- Single-arm trials are not uncommon.
 - Experimental treatment may be ethically preferable to placebo if no effective alternative therapy.
- Some treatment classes have signature side effects or other indicators enabling patients and investigators to de facto ascertain their assigned treatment.

Subjective causality can be difficult and unreliable.

- Lengthy time-to-event trials are common.
- Immunotherapies and other recent therapy classes can have delayed and prolonged effects, decoupling the timing of safety events from treatment timing.
- It is often unethical to wait to assign treatment long enough for effects of prior treatment to fully wash out.

Oncology-Specific Issues – Sample Sizes

> High morbidity and high toxicity tend to result in small sample sizes.

- > General tendency towards high toxicity limits ethical early-phase sample sizes.
- High hazards of typical efficacy indicators like disease progression and death result in smaller late-phase trials than in some other therapeutic areas.
- Multi-stage trials are common. Early termination for efficacy can result in even smaller sample sizes with which to assess safety.

A problem with while-on-treatment strategies

- Simple incidence reporting during treatment and to a time shortly afterwards, the most common approach used for reporting AEs, could be characterized as a while-on-treatment or while-at-risk strategy.
- As ICH E9 (R1) notes, "Particular care is required if the occurrence of the intercurrent event differs between the treatments being compared."
- The basic problem is that such strategies treat both the intercurrent event and what happens afterwards as irrelevant.
 - > This is often not a clinically appropriate assumption.
- ➢ As Hahn and Zhou (2023) note in a PRO context, "If the pain for patients with chronic diseases increases with time, a poisonous drug that can kill people in a relatively short time could produce better results than a placebo, which is misleading."
 - > CIF and subdistribution hazard methods also have this bias.

Joint Statistical Meetings -- Toronto --- August 6, 2023 -- - Page 15

A problem with while-on-treatment strategies (cont)

- The same would apply to other intercurrent events, like progression, that tend to result in ending assessments.
- Checking for superiority or non-inferiority on the relevant intercurrent event first, as an event in its own right, provides some protection from this bias. (Siegel, 2023)
- If a treatment provides a worse survival benefit, then any apparent benefit for lesser safety events may not matter as a practical consideration.
 - This may not be the case, however, for other intercurrent events leading to treatment withdrawal.
- In addition to potentially not accounting for intercurrent events in a clinically meaningful way, simple incidence reporting does not take time or exposure into account.

Another problem with while-on-treatment approaches

- Yang, Wittes, and Pitt (2018) provide a non-oncology example case where such reporting can be particularly problematic.
- They evaluated the SAVOR-TIMI 53 trial of saxagliptin vs. placebo in Type 2 diabetes mellites.
- The trial results had shown a mortality hazard ratio of 1.18 for the period up to 30 days past last treatment.
- Yang et al.'s reanalysis showed a higher mortality rate in placebo patients following treatment withdrawal, mortality not captured in the reported rates.

Yang et al. (2018) cont.

- > As the authors explained,
- "One likely explanation in this case is that nonadherence to placebo was a marker of having experienced a life-threatening adverse event; once such an event occurred, the participant was likely to stop randomized treatment and would have a higher mortality rate than those remaining on their randomized treatment during the same time period."
- That is, the authors hypothesized that placebo patients tended to seek alternative therapy following a life-threatening safety event, with fatality only occurring after treatment withdrawal and hence not counting in the while-on-treatment analysis.
 - > Omitting these events resulted in an incorrect conclusion.

Case Study: Schlumberger et al. (2015)

Randomized, double-blind Phase III study of lenvatinib versus placebo in radioiodine-refractory thyroid cancer.

➢ Primary endpoint PFS.

➢ 392 patients randomized 2:1.

- Patients were unblinded, and placebo patients were permitted to crossover to open-label Lenvatinib, following disease progression.
- Successful trial.

➢ PFS HR 0.21, 95% CI [0.14, 0.31], p < 0.001.</p>

➢ OS HR 0.73, p=0.10.

Median treatment duration on blinded study treatment was 13.8 months for Lenvatinib vs. 3.9 months for placebo.

Schlumberger et al. (2015) Cont.

Published study safety analysis evaluated standard AE incidence during the blinded study treatment period.

	Lenvatinib	Placebo
Median treatment duration (mos)	13.8	3.9
Grade 3+	75.9%	9.9%
Grade 5	2.3%	O%

- Levinatinib was duly approved based on the study results.
 The study achieved its purpose from a pharma company point of view.
- Nonetheless, the study design issues may have inhibited a proper understanding of lenvatinib safety.

Schlumberger (2015) Considerations

- Safety of open-label Lenvatinib treatment was not considered.
 - A "while during blinded treatment" strategy to address crossover prevented considering the complete safety profile of the experimental drug.
- The crossover design and analysis approach permitted evaluating only relatively short-term effects.
- As the example illustrates, the use of simple incidence may negatively bias the apparent safety of a more efficacious, longer-duration treatment.

Schlumberger (2015) Considerations cont.

- When AEs involve hazards over exposure and/or time, a longer duration of treatment and corresponding treatment exposure caused by a more efficacious treatment, as observed in this study, tends to increase the observed incidence of safety events.
- Can be true even when the hazards per unit time or exposure are the same or lower.

Case 2:Weber et al. (2009)

- Randomized, double-blind, placebo-controlled Phase II safety study comparing the tolerability and efficacy of ipilimumab with or without prophylactic budesonide in patients with unresectable Stage III or IV melanoma.
 - Patients were given ipilimumab with either prophylactic budesonide or placebo.
 - ➤ 115 patients randomized 1:1.
 - Primary endpoint was incidence of Grade 2+ diarrhea
- Study was unsuccessful, with similar rates of primary endpoint:
 Ipilimumab+budesonide: 33% (95% CI: 21-46)
 Ipilimumab+placebo: 35% (95% CI: 23-49)

Weber et al. (2009) Cont.

- > A potential issue is effect over time vs. worst incidence.
 - Might budesonide have reduced the duration of moderate+ diarrhea even if it didn't meaningfully affect its incidence?
- "Duration" and "number of events" concepts might be difficult to implement consistently.
 - > An "event" was not defined in the publication.
 - Diarrhea tends to be episodic. Is each episode an individual AE or is it one AE with an extended duration?
 - Different investigators might have different opinions based on subjective judgment if not carefully defined.
 - Without careful definition, not clear what the statement "no patient experienced more than 2 events" meant.

Weber et al. (2009) Cont.

- It might be useful to consider the effect of time.
- > Alternative approaches might be:
 - ➤ Time to first incidence.
 - Time/exposure-adjusted diarrhea rate.
 - Diarrhea-free days
- It might be useful to consider the effect of intercurrent events resulting in informative loss to follow-up, such as death or treatment withdrawal due to other AEs.
- > Example approaches might be:
 - Composite strategy (e.g. diarrhea-free survival).
 - CIF (death as competing risk).

Example discussion

- The Schlumberger (2015) study aimed to establish efficacy in cases where existing therapy provided a poor prognosis.
- The strong efficacy benefit likely outweighed any weaknesses in the safety evaluation.
 - If a treatment provides a strong survival benefit in a highmortality disease, a clearer understanding of the safety risks may well not affect approvability.
 - A crude evaluation of safety may be sufficient so far as "fitness for purpose" (Deming 1986) is concerned.

Example Discussion cont.

- In the Weber (2009), study, however, the purpose of the study was to determine whether a concomitant treatment provided a safety advantage.
- Where safety is especially relevant, outside the context of treatments with overwhelming survival efficacy, timedependence and the effect of duration of treatment may be particularly important.

Summary and conclusions

- Current standard approach to safety reporting could be characterized as a while-on-treatment (while at risk) strategy for intercurrent events ending treatment (death, progression, other toxicity).
- It is significantly flawed when treatment durations diverge or when time to treatment-ending events like progression or death differs between the treatments.
 - Approach is biased against the longer-duration, longer-survival treatment.
- When a treatment provides a strong efficacy advantage, especially a survival advantage, biases introduced in the safety reporting may not make enough of a difference to affect overall approvability despite potentially affecting clinical interpretation.

Summary and conclusions cont.

- In cases where safety is particularly important, however, clearer and more careful reporting of safety that takes duration and the effects of intercurrent events into account is essential.
 - ➤ Safety trials.
 - Specific safety objectives, especially when following for known safety issues.
- In cases where a strong difference in treatment duration is plausible, a method taking exposure into account is suggested, at least as an alternative analysis.
 - Safety hazards are rarely constant, so methods assuming constant hazards can have their own biases.
- As Yang et al. suggest, safety analyses should look for patterns of deaths or other key events beyond treatment withdrawal.

Summary and conclusions cont.

- The estimands guidance helps provide a framework for more clearly understanding and addressing how these can lead to more valid and reliable assessments of safety.
- Our preliminary work so far has resulted more in raising questions than providing answers.
- That said, raising important questions and giving careful thought to them is a critical part of what the estimands framework is designed to achieve.
- Our working assumption has been that safety, characterized as the "Cinderella of biostatistics," could particularly benefit from this process.
- > We continue to think this warranted.

Thank you!

Lifetime Data Science Conference --- June 2, 2023 --- Page 31

References

Hofner, B. Safety analyses: The Cinderella of biostatistics? Regulatory perspective. Presented at EFSPI 11th Statistical Leaders Meeting 07.23.2020.

https://www.efspi.org/Documents/Events/Events%202020/Stat%20Leaders%20Meetings/02_EFSPI%202020_02_SafetyAnalys es_Regulatory.pdf

- Kubler, J. Safety analyses: The Cinderella of biostatistics? Industry perspective. Presented at EFSPI 11th Statistical Leaders Meeting 07.23.2020. <u>https://www.efspi.org/Documents/Events/Events%202020/Stat%20Leaders%20Meetings/02_EFSPI%202020_03_SafetyAnalys</u> es_Industry.pdf
- Schuler, A. Safety analyses: The Cinderella of biostatistics? Industry perspective. Impulse presentaiton. Presented at EFSPI 11th Statistical Leaders Meeting 07.23.2020. https://www.efspi.org/Documents/Events/Events%202020/Stat%20Leaders%20Meetings/02_EFSPI%202020_01_SafetyAnalys

es ImpulsePresentation%20(002).pdf

- > Deming, WE. *Out of the Crisis*. MIT Press (1986)
- United States Food and Drug Administration. Safety Reporting Requirements for INDs (Investigational New Drug Applications) and BA/BE (Bioavailability/Bioequivalence) Studies (2012).
- United States Food and Drug Adm inistration. E9(R1) Statistical Principles for Clinical Trials: Addendum: Estimands and Sensitivity Analysis in Clinical Trials (2021)
- Hahn, S and Zhou, XH. Defining estimands in clinical trials: A unified procedure. *Stat in Med* 42: 1869-87 (2023)
- Siegel, J. et al. Time-to-event estimands and loss to follow-up in oncology in light of the estimands framework.Submitted to Pharmaceutical Statistics. <u>https://arxiv.org/abs/2203.01781</u>
- Yang, F., Wittes, J., and Pitt, B. Beware of on-treatment safety analyses. *Clin Trials* 16:63-70 (2019).
- Schlumberger, M. et al. Lenvatinib versus Placebo in RadioiodineRefractory Thyroid Cancer. N Engl J Med 372:621-30 (2015)
- Weber, J., et al. A randomized, double-blind, placebo-controlled, Phase II study comparing the tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable Stage III or IV melanoma. *Clin Cancer Res.* 15:5591-8 (2009)