▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Balancing events, not patients, maximizes power in randomized survival studies

Godwin Yung

LiDS June 1, 2023 Raleigh, NC

 ${\sf Acknowledgements}$

- Ray Lin, Genentech
- Yi Liu, Nektar Therapeutics
- Kaspar Rufibach, Roche
- Marcel Wolbers, Roche

Pivotal survival trials

Common practice:

- I randomize patients 1:1
- @ follow patients until d events have been observed

Pivotal survival trials

Common practice:

I randomize patients 1:1

I follow patients until d events have been observed Why?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Why event-driven studies?

Why event-driven studies?

Power is driven by number of events.

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < @

Why event-driven studies?

Power is driven by number of events.

Schoenfeld's (1981) large sample approximation for the log-rank statistic:

$$Z \sim N(\theta \sqrt{p_0 p_1 d}, 1)$$

where

- θ : log hazard ratio (HR)
- p_j : proportion of patients randomized to arm j (0 = control)
- *d*: number of events at final analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Why randomize patients 1:1?

Findings 000000

Why randomize patients 1:1?

• ethics

- * ロ * * 個 * * 目 * * 目 * ・ 目 * ・ の < ?

Findings 000000

Why randomize patients 1:1?

- ethics
- habit

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Why randomize patients 1:1?

- ethics
- habit
- statistical power
 - "1:1 maximizes power for continuous endpoints"
 - "1:1 maximizes power for survival endpoints" (Schoenfeld, 1981)

Findings

・ロト・西ト・山田・山田・山口・

How reliable is Schoenfeld's equation?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How reliable is Schoenfeld's equation?

- "Reliable for typical hazard ratios"
 - HR > 0.4 (Barthel et al., 2006)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How reliable is Schoenfeld's equation?

- "Reliable for typical hazard ratios"
 - HR > 0.4 (Barthel et al., 2006)
- "Reliable for typical hazard ratios under 1:1. Not so much under unequal randomization." (Yung et al.)

Alternative approximations for the log-rank statistic

	Randomization ratio that max- imizes power (assuming fixed event size)
Schoenfeld (1981)	1:1
Freedman (1982)	1/HR
Rubinstein (1981)	that which results in balance of events (i.e., 1:1 event size ratio)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

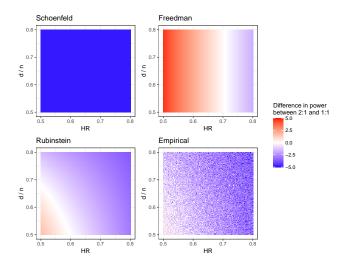
Research questions

- What randomization ratio maximizes power?
- When might unequal randomization be attractive, considering power, accrual duration, trial duration, and sample size?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

I. What randomization ratio maximizes power?

Given hazard ratio $H\!R,$ event-patient ratio d/n, and control median $CM{=}1{\rm y},$ we set \ldots


- number of events *d* based on Schoenfeld's equation with $p_0 = 0.5$, one-sided alpha 0.025, and 80% power
- sample size as $n = d * (d/n)^{-1}$
- accrual rate between 20-50 patients/month to ensure that trial duration is realistic

We then varied randomization ratio (1:1, 3:2, 2:1) and compared their power under various calculations (Schoenfeld, Freedman, Rubinstein, empirical).

Comparisons were made across the grid $(HR, d/n) \in [0.5, 0.8]^2$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Diff. in power = Power(2:1, Method; HR, d/n) – Power(1:1, Method; HR, d/n)

II. When might unequal randomization be attractive?

Case-study with 6 alternative designs ("edge-cases").

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

II. When might unequal randomization be attractive?

Case-study with 6 alternative designs ("edge-cases").

Checkmate-017, a randomized open-label Ph3 study comparing nivolumab vs. docetaxel in patients with NSCLC.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

II. When might unequal randomization be attractive?

Case-study with 6 alternative designs ("edge-cases").

Checkmate-017, a randomized open-label Ph3 study comparing nivolumab vs. docetaxel in patients with NSCLC.

Protocol:

- 264 patients, randomized 1:1
- 189 OS events
- Median survival 11.4m vs. 7.0m (HR=0.61)
- two-sided lpha= 0.04, 90% power
- 12m accrual duration, 24m trial duration

Motivating questions for alternative study designs:

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Motivating questions for alternative study designs:

• How does unequal randomization impact trial duration, assuming accrual rate does not change?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Motivating questions for alternative study designs:

- How does unequal randomization impact trial duration, assuming accrual rate does not change?
- How much faster does **accrual rate** need to be in order to avoid any delay in trial readout?

Motivating questions for alternative study designs:

- How does unequal randomization impact trial duration, assuming accrual rate does not change?
- How much faster does **accrual rate** need to be in order to avoid any delay in trial readout?
- How many more **patients** need to be recruited in order to avoid any delay in trial readout (and assuming accrual rate does not change)?

Motivating questions for alternative study designs:

- How does unequal randomization impact trial duration, assuming accrual rate does not change?
- How much faster does **accrual rate** need to be in order to avoid any delay in trial readout?
- How many more **patients** need to be recruited in order to avoid any delay in trial readout (and assuming accrual rate does not change)?

Given 3:2 or 2:1 randomization, 6 alternatives total.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

				Accrual Dur.	Trial Dur.
Design	RR, Description	d	n	(months)	(months)
CM-017	1:1, Protocol	189	264	12.0	23.8
Alt 1	3:2, Prolonged study	190	(264)	(12.0)	24.9
Alt 2	3:2, Accelerated accrual	190	(264)	10.0	(23.8)
Alt 3	3:2, Increased enrollment	190	274	12.5	(23.7)
Alt 4	2:1, Prolonged study	198	(264)	(12.0)	27.6
Alt 5	2:1, Accelerated accrual	198	(264)	5.1	(23.8)
Alt 6	2:1, Increased enrollment	198	294	13.4	(23.8)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Design	RR, Description	d	n	Accrual Dur. (months)	Trial Dur. (months)
CM-017	1:1, Protocol	189	264	12.0	23.8
Alt 1	3:2, Prolonged study	190	(264)	(12.0)	24.9
Alt 2	3:2, Accelerated accrual	190	(264)	10.0	(23.8)
Alt 3	3:2, Increased enrollment	190	274	12.5	(23.7)
Alt 4	2:1, Prolonged study	198	(264)	(12.0)	27.6
Alt 5	2:1, Accelerated accrual	198	(264)	5.1	(23.8)
Alt 6	2:1, Increased enrollment	198	294	13.4	(23.8)

Similar results were observed across a general set of scenarios:

- 3:2 minimal impact, easier to mitigate
- 2:1 greater impact, harder to mitigate

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Conclusion		
Introduction 000000	Findings 000000	

• Rubinstein's equation allows us to quickly and accurately calculate design parameters (power, trial duration, accrual rate, etc.).

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Rubinstein's equation allows us to quickly and accurately calculate design parameters (power, trial duration, accrual rate, etc.).
- Fixing event size, power is maximized under 1:1 event size ratio (which depends on randomization, hazard, and event-patient ratio).

- Rubinstein's equation allows us to quickly and accurately calculate design parameters (power, trial duration, accrual rate, etc.).
- Fixing event size, power is maximized under 1:1 event size ratio (which depends on randomization, hazard, and event-patient ratio).
- 3:2 is a sensible option in most cases. Some additional patients can be randomized to the active arm with minimal impact on event size and trial duration.

- Rubinstein's equation allows us to quickly and accurately calculate design parameters (power, trial duration, accrual rate, etc.).
- Fixing event size, power is maximized under 1:1 event size ratio (which depends on randomization, hazard, and event-patient ratio).
- 3:2 is a sensible option in most cases. Some additional patients can be randomized to the active arm with minimal impact on event size and trial duration.
- 2:1 may also be considered if event-patient ratio is small $(d/n \le 0.5)$. If event-patient ratio is large, then unequal randomization may be hard to justify given the increase in event size and trial duration.

References

- Barthel, F. et al. (2006) Evaluation of sample size and power for multi-arm survival trails allowing for non-uniform accrual, non-proportional hazards, loss to follow-up and cross-over. *Stat Med* 25:-2521-2542.
- Freedman, L. (1982) Tables of the number of patients required in clinical trials using the logrank test. *Stat Med* 1:121-129.
- Hsieh, F. (1992) Comparing sample size formulae for trials with unbalanced allocation using the logrank test. *Stat Med* 11:1091-1098.
- Rubinstein, L., Gail, M., and Santner, T. (1981) Planning the duration of a comparative clinical trial with loss to follow-up and a period of continued observation. J Chron Dis 34:469-479.
- Schoenfeld, D. (1981) The asymptotic properties of nonparametric tests for comparing survival distributions. *Biometrika* 68:316-319.
- Yung, G. and Liu, Y. (2019) Sample size and power for the weighted log-rank test and Kaplan-Meier based tests with allowance for nonproportional hazards. *Biometrics* 76:939-950.