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Why event-driven studies?

Power is driven by number of events.

Schoenfeld’s (1981) large sample approximation for the log-rank
statistic:

Z ∼ N(θ
√

p0p1d , 1)

where

θ: log hazard ratio (HR)

pj : proportion of patients randomized to arm j (0 = control)

d : number of events at final analysis
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How reliable is Schoenfeld’s equation?

“Reliable for typical hazard ratios”

HR > 0.4 (Barthel et al., 2006)

“Reliable for typical hazard ratios under 1:1. Not so much
under unequal randomization.” (Yung et al.)
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Alternative approximations for the log-rank statistic

Randomization ratio that max-
imizes power (assuming fixed
event size)

Schoenfeld (1981) 1:1
Freedman (1982) 1/HR
Rubinstein (1981) that which results in balance of

events (i.e., 1:1 event size ratio)
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Research questions

I What randomization ratio maximizes power?

II When might unequal randomization be attractive, considering
power, accrual duration, trial duration, and sample size?
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I. What randomization ratio maximizes power?

Given hazard ratio HR, event-patient ratio d/n, and control median
CM=1y, we set ...

number of events d based on Schoenfeld’s equation with
p0 = 0.5, one-sided alpha 0.025, and 80% power

sample size as n = d ∗ (d/n)−1

accrual rate between 20-50 patients/month to ensure that trial
duration is realistic

We then varied randomization ratio (1:1, 3:2, 2:1) and compared their
power under various calculations (Schoenfeld, Freedman, Rubinstein,
empirical).

Comparisons were made across the grid (HR, d/n) ∈ [0.5, 0.8]2.
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Diff. in power = Power(2:1,Method; HR, d/n)− Power(1:1,Method; HR, d/n)
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II. When might unequal randomization be attractive?

Case-study with 6 alternative designs (“edge-cases”).

Checkmate-017, a randomized open-label Ph3 study comparing
nivolumab vs. docetaxel in patients with NSCLC.

Protocol:

264 patients, randomized 1:1

189 OS events

Median survival 11.4m vs. 7.0m (HR=0.61)

two-sided α = 0.04, 90% power

12m accrual duration, 24m trial duration
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Motivating questions for alternative study designs:

How does unequal randomization impact trial duration,
assuming accrual rate does not change?

How much faster does accrual rate need to be in order to
avoid any delay in trial readout?

How many more patients need to be recruited in order to
avoid any delay in trial readout (and assuming accrual rate
does not change)?

Given 3:2 or 2:1 randomization, 6 alternatives total.
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Accrual Dur. Trial Dur.
Design RR, Description d n (months) (months)
CM-017 1:1, Protocol 189 264 12.0 23.8
Alt 1 3:2, Prolonged study 190 (264) (12.0) 24.9
Alt 2 3:2, Accelerated accrual 190 (264) 10.0 (23.8)
Alt 3 3:2, Increased enrollment 190 274 12.5 (23.7)
Alt 4 2:1, Prolonged study 198 (264) (12.0) 27.6
Alt 5 2:1, Accelerated accrual 198 (264) 5.1 (23.8)
Alt 6 2:1, Increased enrollment 198 294 13.4 (23.8)

Similar results were observed across a general set of scenarios:

3:2 minimal impact, easier to mitigate

2:1 greater impact, harder to mitigate
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Conclusion

Rubinstein’s equation allows us to quickly and accurately
calculate design parameters (power, trial duration, accrual
rate, etc.).

Fixing event size, power is maximized under 1:1 event size
ratio (which depends on randomization, hazard, and
event-patient ratio).

3:2 is a sensible option in most cases. Some additional
patients can be randomized to the active arm with minimal
impact on event size and trial duration.

2:1 may also be considered if event-patient ratio is small
(d/n ≤ 0.5). If event-patient ratio is large, then unequal
randomization may be hard to justify given the increase in
event size and trial duration.
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