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Outline

Puzzling behavior of HR in real Clinical trials with subgroups

* HR can make a purely prognostic biomarker seem predictive

Two issues:

» Efficacy measure such as HR and OR are not logic respecting and non-collapsible at the
population level

* Current computer software and common analysis methods help mask the problem

Our proposal: logic respecting estimands at population level and SME for data
analysis

e Steps to implement SME using either parametric or non-parametric approach

* Simultaneous Cl for biomarker subgroups and overall population based on real clinical trials

Summary



nature

mediCine * POPLAR data demonstrated proof of principle for bTMB as
a predictor of PFS clinical outcome

Article | Published: 06 August 2018

Blood-based tumor mutational burden as Atezolizumab versus docetaxel for patients with previously =>@ ®
treated non-small-cell lung cancer (POPLAR): a multicentre,

ap redictor of clinical benefit in non- open-label, phase 2 randomised controlled trial

small-cell lun g cancer patients treate d e A Core Gt Lownrss et bWtk e We Dot Che ing s A Sl A,
for the POPLAR Study Group™

Wi th ate Z Oliz 1_]_ mab Background Outcomes are poor for patients with previously treated, advanced or metastatic non-small-cell lung cancer Lancet 2016; 387: 1837-46

David R. Gandara B4, Sarah M. Paul, Marcin Kowanetz, Erica Schleifman, Wei Zou, Yan Li, Achim

e OAK data confirm bTMB as a potential non-invasive
biomarker of PD-L1-directed immunotherapy.

Rittmeyer, Louis Fehrenbacher, Geoff Otto, Christine Malboeuf, Daniel S. Lieber, Doron Lipson, Jacob
Silterra, Lukas Amler, Todd Riehl, Craig A. Cummings, Priti S. Hegde, Alan Sandler, Marcus Ballinger,
David Fabrizio, Tony Mok B& & David S. Shames B4

o Atezolizumab versus docetaxel in patients with previously ~ @, ®
Nature Medicine 24, 1441-1448 (2018)  Download Citation Coonbiak

treated non-small-cell lung cancer (OAK): a phase 3,
open-label, multicentre randomised controlled trial

Achim Rittmeyer, Fabrice Barlesi, Daniel Waterkamp, Keunchil Park, Fortunato Ciardiello, Joachim von Pawel, Shirish M Gadgeel, Toyoaki Hida,
Dariusz M Kowalski, Manuel Cobo Dols, Diego L Cortinovis, Joseph Leach, Jonathan Polikoff, Carlos Barrios, Fairooz Kabbinavar,

Osvaldo Arén Frontera, Filippo De Marinis, Hande Turna, Jong-Seok Lee, Marcus Ballinger, Marcin Kowanetz, Pei He, Daniel S Chen, Alan Sandler,
David R Gandara, for the OAK Study Group*

Summary
Background Atezolizumab is a humanised antiprogrammed death-ligand 1 (PD-L1) monoclonal antibody that Lancet2017;389:255-65



s bTMB a predictor of clinical benefit in NSCLC patients

treated with atezolizumab in OAK study?

a
Population

bTMB = 4

bTMBE = 6

bTMB = 8

bTMB = 10
bTMB = 12
bTMB > 14
bTMB = 16
bTMB = 18
bTMB = 20
bTMB > 22
bTMB > 24
bTMB > 26

BEP
ITT population
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b
N (%) PFS HR (95% CI) Population N (%)
441 (76) —4& -+  0.89(0.73-1.08) bTMB > 4 441 (76) — & —
371 (64) — & —t 0.83 (0.67—1.03) bTMB > 6 371 (64) ——
302 (52) — @ — 0.79 (0.62—1.00) bTMB = 8 302 (52) ——
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211 (36) ——— 0.73 (0.54-0.97) bTMB > 12 211 (36) ——
188 (32) ——— 0.68 (0.50-0.92) bTMB > 14 188 (32) ——
158 (27) —y——— 0.65 (0.47—0.92) bTMB > 16 158 (27) L 2
136 (23) — i ——— 0.66 (0.46—0.95) bTMB > 18 136 (23) ¢
105 (18) O 0.61 (0.40-0.93) bTMB > 20 105 (18) ¢
84 (14) o 0.57 (0.35-0.91) bTMB > 22 84 (14) *
69 (12) o 0.54 (0.32-0.91) bTMB > 24 69 (12) o
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e — e

cut-points of bTMB in the OAK study Overall, there was a clear
monotonic relationship between an increasing bTMB score and

PFS outcomes (Fig. 4a). A similar, although less compelling, mono-
tonic trend was observed for OS (Flg 4b). Unlike PFS, numerical

Favors atezolizumab

Favors docetaxel

0S

OS HR (95% CI)

0.70(0.57-0.87)
0.71 (0.56-0.90)
0.70 (0.54-0.91)
0.69 (0.52-0.93)
0.68 (0.50-0.94)
0.66 (0.47-0.92)
0.64 (0.44-0.92)
0.61 (0.41-0.90)
0.65 (0.41-1.03)
0.67 (0.40-1.13)
0.53 (0.30-0.94)
0.50 (0.27-0.95)

0.64 (0.53-0.77)
0.73 (0.62-0.87)
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Favors atezolizumab  Favors docetaxel



Rerun of the OAK trial data* shows that bTMB is mostly a
prognostic (instead of predictive) biomarker in terms of OS

Estimated median OS from Weibull fit with bTMB, Trt and the interaction term
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HR behavior for purely prognostic biomarker based on
simulation

bTMBc HR for {g+ . .
=10 g%g} - Replicated the pattern observed in
==20 0.760 - i
==30 0.732 —- OAK trlal
==40 0.721 ——
==50 0677 —i—
>=60 0.643 —=—
EI.IE- EI.‘I';-E- EI.IT EI.ITE- EI.IB EI.;E- EI.IB EI.;!IE- 1I

Hazard Ratio

bTMBc HR for {g-}

0 0o —— Conflicting message in terms which pt
= R —i— .
<30 0.710 - subgroup benefits most
=4() 0.737 —-
=0 0.761 i
=60 0.781 i
EI.IE- EI.‘I';-E- EI.IT EI.ITE- EI.IB EI.;E- EI.IB EI.;!IE- 1I

Hazard Ratio

Per disjoint biomarker subgroup, generated 10,000 (total 70,000) time-to-event random variable that follows Weibull distribution. Simulated data present purely prognostic
biomarker (i.e. constant HR within each disjoint biomarker subgroup but with increasing baseline hazard across different subgroups).



HR behavior for purely prognostic biomarker based on
simulation

For any cut point of the bTMBc value, the
marginal HR for whole data {g+, g-} is always
outside range of the HRs of bTMBc subgroups.
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° Ex) bTMBc cut = 40
x
§ oo
8 {g+} {g-} {g+, g-}
° < i i ] » HR
0.712 0.737 0.798

— HR from {g+} group marginal model
= = HR from {g-} group marginal model
O HR from {g+, g-} marginal model
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bTMBc cut (g+ group: ==cut, g- group: <cut)

Marginal HR: HR for the overall population using Trt as only covariate in the cox model



Our proposal

‘ In population space ‘

* logic respecting Estimands*:

0 € [Hg—,99+]

* 9 is efficacy in {g-, g+}
* 0,- is efficacy in {g-}

. Hg+ is efficacy in {g+}

*Ding et al (2016); Lin et al (2019)

In sample space

* Logic-ensuring Estimation:

* Analysis principles that ensures
logical relationships in the
estimates

N [é —,§g+]
e Subgroup Mixable Estimation
(SME)*

10



I population space I

Logic-respecting vs collapsible Estimands

Logic-respecting Collapsible®
0 € [04-,0,+] 0 = (wWy-04- +wy+0,+)/(Wg—+ W +)
* No requirement on weights * Introduced in general setting, not

specific to subgroups
* Require specification of weights
Commonalities: Wg—, Wg+ = 0
e Population level definition

* Not tied to specific models
* Non-logic-respecting and non-collapsible behavior are different from

confounding and can occur despite randomization and large sample size

*Huitfeldt et al. (2019) 11



I population space I

Logic respecting efficacy estimands for all endpoint types

Endpoint type | Efficacy Estimand Logic-respecting?

Continuous Difference of means Yes
Difference of props Yes
Binary Relative risk (RR) Yes
Odds ratio (OR) No
HR No
Difference of medians No
: : N
Time-to-event Ratio of medians (RoM) Yes
(TTE) Difference of RMSTs/milestone Yes
probabilities
Ratio of RMSTs/milestone Yes
probabilities

* When there is proportional hazards within each subgroup under Weibull model 2



I Sample space

Incorrect analysis methods in analyzing real clinical trial data

* For non-logic-respecting efficacy measures such as HR

* LSMEANS in PROC PHREG produces marginal HR that is between the subgroup
HRs by

HR,, = exp{y*(logHR,) + v~ (logHR_))

* So it appears that marginal HR is always in between subgroup HRs
* However, this is not the real marginal HR

* For logic-respecting efficacy measures in the form of difference of
expectation

* Marginal models/analysis can lead to illogical behavior in estimates

13



I Sample space

Marginal model estimates can lead to illogical behavior even
for logic respecting efficacy measure

Two models to estimate difference of means (DoM): 6 = E(Y;|T; = Rx) — E(Y;|T; = C)

Conditional model : Y; =y + T} + 8G; + 0T,G; + £; with £; ~ N (0, 02)
Y, = u* + T, +¢; with ¢; 4 N (0, o :
Marginal model - S b (0.°) Mix within each Rx and Cusing y™,y~
* DoM estimator fro " “nal model is LS-means estimator /
* O =EMIT =~ W+ EWIT, =Rx, G =g )y | - [EWITi = C,6, = g)y" + E(ITi = C,G, = gy
* DoM estimator fro | model is
- O, =a" =|[EQ @ [E(Y;|T; = C)] «—— Directly pooling data within each treatment arm
? ‘\.
B T | | T illogical behavior when 6,, & [6,-
_ T T T w1 illogical behavior when 6,,, & [0~ 6,+] T
S . [ T LT
® ' =N — & | At T o/ i i i
5 II A L !l Tll L ,DTl 71 118 57% illogical behavior
(ST nel G AR S lLi ST lgff (lj among 10,000 simulations*
- _L - l__ |+ -l e4 @0 — 0+ 0,
oA = -‘"’-‘I‘-’“‘-"D-O".E’ﬁ;;9;;i.‘ﬁ.@.ﬁ-}_wLﬁ-ﬁ-ﬁ-"ﬁ-ﬁg-E-ﬁég-ﬁ-ﬁ-ﬁ#-ﬁ-ﬁb‘;ﬁ-ﬁ-?r-‘;}Q—'-%—-’- L@Q?@é% 14

Simulation

*u =1l,a =-1,=1,86=05y"=1/3,0 =1, 1:1 allocation with N=120



I Sample space

RMST difference based on marginal KM curves may
disrespect logic

N=160, 1:1 RR, y* = 0.5*

1.0

Qverall

G-

G+
Control
Treatment

|
|
L]
M~
1

06
|

Survival Probability
04
RMST difference

02
|

—_— o

o o o o= o

0.0

0 5 10 15 20 25 30 35 .
Marglnal KM estlmated by Time [ 8 10 12 14 16 18 210 22 24 26 28 30 32 34
pooling g-, g+ pts in Rx and C Even though RMST difference is logic respecting at population level,
arm separately estimated RMST difference by the pooled KM estimate for Rx and C s

not always in between those from the subgroups

*Data generated with exponential distribution, median for Carm is 6, 10 for g+, g- and HR=0.7 for both subgroups
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I Sample space

Correct analysis methods for logic respecting efficacy
measures for all endpoint types
Principle of Subgroup Mixable Estimation (SME)

1.Get estimated treatment effect for (g+,Rx), (g-, Rx), (g+,C), (g-,C) and associated
variance matrix estimates

2.Get estimates of Rx and C treatment effect for overall pop:
* mix within Rx and C on the probability scale by population or pooled sample prevalence

3.Calculate estimates of efficacy (Rx vs C) in g+ and g- and overall pop and associated
simultaneous Cl

e jer | |overall
o Mix within Rx o
Rx 5 RX pRx

X ~RX
vg_ vg+ . . .
~C " Mix within C

C Vg— Vgt ) C 7

‘ ‘ l No need to explicitly\
find the coefficient
-m Get simultaneous Cl for e-m f?r mixing HAg" and
Rx vs C 0 - (6g-,04+,0) Rx vs C 0,+togetd y

16



I Sample space

Following SME to produce simultaneous CI for
RoM under Welbull model

* Fit Weibull model h(t) = ho(t)exp{BiT + B,G + BTG}

e ho(t) = kA¥t* 1, Kk and A are the shape and rate parameters, respectively
0. Estimate all parameters and covariance matrix @ = (k. A, 1, 3, 83) and .

1. Within Rx or C, compute median for g+/g- and overall population v =
(vg-, vg",vgﬂ, vg+, ve, vR) = g(¢, t) where g(.) is implicit function by solving
the following equations
Mix on the probability scale within Rx and C

t = vy :gi(p.t) =exp(=At") —0.5=0 l
_ _.R.r . A 1) — av _ Bk LA =g . o ) o
L = Uy - Q'QII(,L f} exXp ( et A"t ) 0.5 0 t = - g5(, f:l =~ exp l{_)\hi_h.} __.__+ exp (—E-“'Sg)th _n) —05=0
— C (A — ovn (—eB2 N4 _ 0 F — :
t = vg. :g3(d,t) =exp (—eZA" ) —05=0 t = v®ge(d,t) =7 “exp (—e eV ") + 4T exp (—e TR NN t*) —0.5=0
t = t:;{:" : ga(p,t) = exp (—6-514'-5'34'-5“}%“) —05=0

Replacing estimator q3 with ¢ above to get the estimator v



I Sample space

Following SME to produce simultaneous CI for
RoM under Welibull model

2. Compute the estimated variance and covariance matrix of ¥ by the
implicit delta method (Benichou & Gail 1989)

« We know ¢ ~ N(¢,X) from Weibull model fitting, then ¥ ~ N(v, X)) where
e 3, =J HZH'(J~ Y

o | = % fori,j=1,...,6 should be a diagonal 6X6 matrix
]

e H= 991 fori=1,...,6; j=1,...,5 is a 6X5 matrix
GIY,

» Covariance matrix of ¥ can be estimated as £, evaluated at (¢, V)



I Sample space

Following SME to produce simultaneous CI for
RoM under Welibull model

3. Calculate ratio of median for g+/g-, overall and estimated variance
and covariance matrix based on multivariate Delta method
e Letfj = log(¥) thenfj ~ N(log(v),Z;, = DX,D") where D is the diagonal
matrix with (1/v;)i=1 ¢
* Letuy =1y —nyUy; =1y — 135 Uz =N — N5 then
» u= (log(viX/vi-), log(vet /ves), log(v™™ /v))
* u~NWZX, =M, M) where M = 0u;/0n; i=1,2,3;j=1,...,6 is a 3X6 matrix
* Calculate the critical value q using the multivariate normal distribution of U as follows
P( L < q, < q) =1—-a

Uz—Up
* Simultaneous Cl for wisthen I, = I,, X I,,, X I, where I,,, = ; + q X se(u;)

A~

Uz—Uus
se(i3)

U —u,

)

se(iq) se(iiy)

* Point estimator for (v,= /v-, v§f/v§+, vE* 1v¢) is exp (@) with simultaneous
Cl exp(I,)



I Sample space

Following SME to produce simultaneous Cl for RMST
difference using non-parametric KM estimates

1. Letususev = (v V= ,ng+, vgf, v¢, va) to denote the RMST for g-/g+ and

overall population W|th|n each treatment arm

~ " ~C - Rx " R ~C " 2O ~ R " ~“Rx
Ug- :/0 Sy~ {z‘)df.rg_ :/D Sy (1‘)(31‘.1‘9_ :A bg+{f){ff. Uyt :/0 Syt (1) dt.

2. Obtain the overall Rx and C RMST estimates and claim v ~ N (v. X,)

~ () — -~ 4+ - ~Rx — ~Rx ~ Ra
il'l f— -"".I ?'I . -"".I il'l 1. ?_'I p— .""‘-I' ¥ . -"".I il
) I g +1 g I Yg +1 gt

3. RMST difference u can be written as @ — Ho ~ N (Hv, %, — HX,H") and
simultaneous Cl can be calculated using 3

Uy t'RE—?_*g'_ -1 1 0 0 0 0
u= 1| u | = ?_'ff—rg = 0 0 =1 1 0 0 |xv:=Hxwo.

i3 vz _ € 0o 0 0 0 —1 1
20



Applying SME to Keynote189 OS

Fit following Weibull model:

h(t) = ho(t)exp{piT + B,G + BTG}
where hy(t) = rA*t*1

95% sim. Cls for RoM (right) and ratio/difference
of RMST and 1-year OS rate (below)

Efficacy
Measure

PD-L1-
PD-L1+
Overall
PD-L1-
1-year
survival PD-L1+
rate
Overall

1.393
(1.101,1.762)
1.245
(1.088,1.424)
1.286
(1.143,1.446)
1.482
(1.102,1.993)
1.261
(1.088,1.463)
1.320
(1.154,1.510)

Weibull model
oo | e

4.726
(1.624,7.827)
3.777
(1.579,5.976)
4.089
(2.292,5.887)
20.8%
(6.8%,34.8%)
15.3%
(6.2%,24.4%)
17.1%
(9.5%,24.8%)

median OS for Rx

me

RoM estimate=1.76, 1.66, 1.70

o
[ap]

15

10

5

95% sim. Cl are the arcs in M&M plot

M&M plot /

5
@ 8

e : PD-L1-
| = : PD-L1+
¢ : QOverall
0 é ' I I 2|O 2‘5 ‘

m® = median OS for C
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Applying SME to
Keynotel89 OS

PD-L1+

== Pembrot+Chemo
= Chemo

Weibull model results

Sample space

Efficacy Meastre Group Estimates Ratio (95% | Difference (95%
Rx C Simultaneous CI)  Simultaneous CI)
PD-L1- 16.8 12.0 1.393 (1.101,1.762) 4.726 (1.624,7.827)
RMST (months)  PD-L1+4+ 192 154 1.245 (1.088,1.424) 3.777 (1.579,5.976)
Overall 184 14.3 1.286 (1.143,1.446) 4.089 (2.292,5.887)
PD-L1-  64.1 | 43.3] 1.482 (1.102,1.993) 20.8 (6.8,34.8)
I-year OS rate (%) PD-L14+ 73.9 | 58.6] | 1.261 (1.088,1.463) 15.3 (6.2,24.4)
Overall  70.7 53.6 1.320 (1.154,1.510) 17.1 (9.5,24.8)

Non-parametric KM results

| ) Estimates Ratio (95% Difference (95%
Efficacy Measure Group o
Rx C Simultaneous CI)  Simultaneous CI)
PD-L1-  16.9 121 1.392 (1.103,1.756) 4.746 (1.638,7.855)

RMST (months)  PD-L1+ 19.1 15.0 1.275 (1.098,1.481) 4.110 (1.736,6.483)
Overall 183 14.0 1.308 (1.153,1.484) 4.319 (2.426,6.212)
PD-L1-  64.0 | 47.6]|1.344 (0.954,1.895) 16.4 (-1.2,34.0)
l-year OS rate (%) PD-L1+ 73.1 [49.2]]1.485 (1.185,1.861) 23.9 (11.8,35.9)
Overall 70.1 48.7 1.440 (1.261,1.644) 21.4 (11.5,31.4)




summary

* Using non-logic respecting efficacy measures such as HR can potentially
harm patients due to incorrect treatment benefit assessment

* Explaining to clinicians that “HR in the overall pop and HR in the
subgroups are apples and oranges and should not be compared” is not
the right message

Our recommendation:
 Summarize clinical trial results with logic respecting efficacy measure

e Use SME to correctly analyze clinical trial results using either parametric
or non-parametric approaches to guarantee logical behavior (thus
marginal agreeing with conditional)

* Shiny app and R codes available for implementation
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Clinical Trials with two subgroups where HR is not logic
respecting

MET study: Ph2 NSCLC!

Patient

\ i —— /

KN-426: Ph3 RCC PFS3

Pembrolizumab +

Axitinib Sunitinib

N/No. Events __N/No. Events HR (95% CI
432/264 429/281 0.71 (0.62-0.84) l

HR=0.47 l Overall
IHC 0 category 1
IHC 2+ Favorable 138177 131175
Intermediate 238/145 246/163
Poor 56/42 52/43
IMDC risk category 2
&iﬁ / \ “ Favorable 138/77 13175
HR=0 34 lemedatePocr aner 20200
Nivolumab plus ipilimumab Chematherapy Unstratified hazard ratio
with chemotherapy (bwo cycles) for death (95% 1)
Events/ Median overall survival,  Events/ Median overall survival,
patients maonths (95% CI) patients maonths (95% C1)
69/135  168(137-NR) 89/129 9.8(77-137) —— 0.62 (0-45-0.85) ]
105/203 15-8 (13-8-NR) 135/204 10-9(95-13-2) —— 0-64 (0-50-0-82)
1-49% 681127 15.4 (12.6-NR) 787106 104 (87-124) — 0.61(0.44-0.84)
=50% 37176 180 (13-1-NR) 61/98 12-6(9-4-16-9) — 0 0-66 (0-44-0-99)
All randomly assigned patients ~ 190/361 15.6 (13.9-20-0) 242/358  10.9(9.5-12:6) - 0-66 (0.55-0-80)"
T T T I L
CM-9LA: Ph3 NSCLC OS? o en Wy M e
. — —>
Favours nivolumab plus ipiimumab  Favours
with chemotherapy (two cycles)  chemotherapy

0.79 (0.57-1.09)
0.72 (0.57-0.90)
0.54 (0.34-0.86)

0.79 (0.57-1.09)
0.69 (0.56-0.84)

0.77 (0.53-1.13)
0.68 (0.48-0.97)
0.70 (0.56-0.87)

0.65 (0.49-0.87)
0.72 (0.58-0.89)

0.86 (0.64-1.15)
0.66 (0.52-0.82)

0.67 (0.54-0.84)
0.74 (0.55-0.99)

0.74 (0.60-0.91)
0.60 (0.43-0.84)

0.70 (0.58-0.85)
0.63 (0.42-0.95)

Figure 3: Forest plot of overall survival based on longer follow-up in predefined patient subgroups
ECOG=Eastern Cooperative Oncology Group. NR=not reached. *Stratified hazard ratio. Unstratified hazard ratio was 0-67 (95% Cl 0-55-0-81).

1.Spigel et. al. (2013). 2. Paz-Ares et. Al. (2021); 3. Powles et. Al. (2020)
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Conditional and marginal HR disagree at both pop and sample level

* At population level:

* With a purely prognostic subgroup G={g+,g-}, marginal HR gets closer to 1
than the common subgroup HR

HR g for overall population

Subgroup HR=0.64 =) 0564 : .
for g+ and g- . T

log(prognostic effect)

50% prevalence; prognostic effect is the HR between g+ and g-; HR_mg is calculated as HR from the cox model with Trt as the only covariate — even
though the theoretical HR for overall pop depends on time when prognostic effect is present; HR_mg is viewed as average HR (Xu and O’Quigley 2000)



I population space I

Logic-respecting vs collapsible Estimands

Logic-respecting Collapsible®
0 € [04-,0,+] 0 = (wWy-04- +wy+0,+)/(Wg—+ W +)
* No requirement on weights * Introduced in general setting, not

specific to subgroups
* Require specification of weights
Commonalities: Wg—, Wg+ = 0
e Population level definition

* Not tied to specific models
* Non-logic-respecting and non-collapsible behavior are different from

confounding and can occur despite randomization and large sample size

*Huitfeldt et al. (2019) 29



I population space I

Causal interpretations

“How the outcome of treatment compares to what would have happened
to the same subjects under different treatment conditions...”*

Difference of expectations:
{EQR) = Yi(0)) =[E(Y*) - E(Y°) |

Population average of the Difference in population
difference in potential average of observed outcomes
outcomes when the same from pts taking Rx vs other pts
person takes Rx vs C taking C

*ICH E9 (R1) guidance



Difference of expectation
(DOE)

I population space I

In the setting of RCT, let G,=g+ or g- denote
subgroup and T,=Rx or C denote randomization
assignment, we have

« Ignorability: T; L (Y;(Rx),Y;(C))|G; ¥

¢ Ti 1 Gi

+ E(Y;(Rx) — Y;(€)) = E(Y;(Rx)) — E(¥;(C)) = E(YF) — E(YF)

o

+ E(Y(R) = EGIE(Yi(RD)IG)] T EG[EY(ROIT; = Rx, G)] = Egirepy [EV(ROIT; =

Rx,G;)] = E(Y;(Rx)|T; = Rx) = E(Y{¥)
» Similarly E(Y;(€)) = E(Y{) = E(Y)

* DoE in the overall is a weighted ave of DoE in the subgroups by prevalence
» E(Y) —E(Y)=[E(Y*|G; = g*)y* + (V|G = a" )y 1 = [E(YC1G; = g )yt + E(YC|G; =

DOE for g+

DOE for g-



I population space I

Efficacy estimand in the form of ratio

* Following similar ideas for difference, ideally one is interested in
E(Y;(Rx)/Y;(C))

* Population average of the ratio in potential outcomes when the same person i
takes Rx vs C, but can’t be estimated using observed data Y*¥, YjC

« E(Y;(Rx)/Y;(C)) + E(Yin/YjC) as i and j are from different pts
» Alternative 1: E(Y;(Rx))/E(Y; (C))=E(1QR’C)/E(Y]-C)
* Example: Relative Risk for binary endpoint

* Note: E(Y;(Rx)) i [E(Yi(Rx)IGi)
E.(0) ~ ° E©I6)




I population space I

Efficacy estimand in the form of ratio

Yi(Rx)
Y;(C)

* Ideally, we want E [

e Alternative 2:

[l (Yy(fg;))] — E log(Y (RX)) — log(Y (C))] [log(Yle) _ lOg(Y]C)] _E [log <1;;ch>]

J

* This is a different estimand from log [E (Y;_(fg;))]

* Under log normal, common variance (e.g. bioequivalence), it relates to
“Alternative 1” — assumption doesn’t hold with subgroup effect

i1t -l

J J




I population space I

Hypothetical example 1- prognostic & predictive subgroup effect

Same pt taking Rx and C, 10° SS each cell, Total
N=2*106, Y;(Rx)/Y;(C) can’t be observed

Survival time (months) E

Y; (Rx) 2 5
Y;(C) 1 10
Y; (Rx)/Y;(C) 2 1/2

E[Y;(Rx)]  0.5%2+0.5%5 3.5

E[Y;(C)]  0.5%¥1+0.5¥10 5.5 = 0.64

[l ( ‘l(f?)] = 0.5 *log(2) + 0.5 * log G) =

= 1 (after exponentiation)

£ 05424052 =125 AF
= U0 * O k= 1.
Y;(€) 2
—

<

Different pts taking Rx and C, 108 SS each cell, Total N=4*10°
Can be observed in clinical trials

y.C 1

0.5*2+0.5*5=3.5
10 0.5*1+0.5*10=5.5

C
Y

yRx 2 2 5 5
E = 0.25 %74 0.25 % 5+ 025 * = + 025 x 5 = 1.925

1 10

E[YR*]  0.5%2+0.5%5 3.5
E[Yf]  05%14+0.5¢10 5.5

= 0.64

J

o )| = los(1%)  10g4)] = Elon(r)] - g1

= [0.5 *log(2) + 0.5 * log(5)] —

[0.5 x log(1) + 0.5 * log(10)] = 0

Q: Is there a need to define treatment effect for the overall population?

34



I population space I

Hypothetical example 2 - purely prognostic subgroup effect

Same pt taking Rx and C, 10° SS each cell, Total Different pts taking Rx and C, 108 SS each cell, Total N=4*10°
N=2*106, Y;(Rx)/Y;(C) can’t be observed Can be observed in clinical trials
Survival time (months) ﬂ Survival time (months) m g+ and g- combined
ez - YR 0.5%2+0.5*10=6
1 (C) i ij 1 5  0.5*1+0.5%5=3
Y;(Rx)/Y;(C) 2 2

Y< 5 1 5

yRx 2 2 10 10
E =025%2+025xc+025x—+025x—=36
j

E[YR*]  0.5+240.5%10 6 _ 5
E[YF]  05+1+05%5 3

_

E[Vi(RX)] _ 0.5+2+0.5+10_6 _ .,
E[Y;(C)]  0.5%140.5%5 3

Rx
E [log ("%)] = 0.5 +10g(2) + 05 + 0g(2) = | o E[Iog(%)]=E[Iog<nRx>—log<Yf>1=E[1og<nRx>]—E[log(Yf)]
log(2) = 2 (after exponentiation) 0.5 * ljog(Z) + 0.5 * log(10)] — [0.5 * log(1) + 0.5 x log(5)]
log(2)

Two alternatives are consistent with the ideal estimand of expectation of ratios in this case =




I population space I

Hypothetical example 3 - purely predictive subgroup effect

Same pt taking Rx and C, 10° SS each cell, Total

N=2*10°, Y;(Rx)/Y;(C) can’t be observed

Survival time (months) m

Y:(Rx) 2 10
Y:(C) 11
Y;(Rx)/Y;(C) 2 10
Y:(R
E[‘( )| 0552405410 =6 —
Y:(0)
E[Y;(Rx)] 0.5%2+0.5%10_6 —
E[Y;(C)]  0.5%140.5%1 1
E [log (m)] = 0.5 *log(2) + 0.5 <

Y;(C)
log(10) = log(v20) = log(4.5)

= 4.5 (after exponentiation)

Different pts taking Rx and C, 108 SS each cell, Total N=4*10°
Can be observed in clinical trials

Survival time (months) m g+ and g- combined

10 0.5*2+0.5*10=6

YjC 1 1 0.5*%1+0.5*%1=1
E Yin 0.25 2+025 2+025 10+025 10 6
= 0. * — . * — . * — . * — =
YjC 1 1 1 1
E[Y¥]  0.5+240.5%10_6
E[YF]  05+1+05+1 1

Y
Elog 7

Rx

J

)] = E[log(1{%) — log(1}°)] = E[log(1{**)] — E[log(1}°)]

[0.5 * log(2) + 0.5 *log(10)] — [0.5 * log(1) + 0.5 * log(1)]
log(4.5)

Ratio of expectations is the same as the expectation of ratios in this case, but not exponential of expectation of log ratios



I population space I

Summary on Efficacy Estimand in the form of ratio

* Among the three different causal estimands:

el - c-slm(i)

* A can’t be estimated using observed data Yin, ch while B and C can

e Cis not the same as A after exponentiation in most cases except when the
subgroup effect is purely prognostic

= B seems to represent treatment effect reasonably well and are the same as A in
purely prognostic and purely predictive subgroup effect cases

« Examples: RR for binary endpoint, ratio of RMSTs/Milestone probabilities for TTE endpoint



I Sample space

Incorrect estimate of marginal HR in SAS LSMEANS that
masks illogical behavior of HR

True marginal HR

0.80- mmm)  PROC PHREG DATA=DA2;
CLASS TRTO1P(REF="CTL") BTMB40(REF="g-") /PARAM=GLM;
MODEL OS*OSCNSR(1)=TRTO1P;
| HAZARDRATIO 'H1' TRTO1P/DIFF=ALL CL=BOTH;
= HRIng= ' SMEANS TRTO1P;

0.781

o
= 0.744 == HRi
§ HR in g+ RUN:;
T 0.72
©
N
T 070 , . n
LSmeans estimate of marginal HR from stratified model
0681 A LSmeans estimate of marginal HR from unstratified model
0.66+
PROC PHREG DATA=DA?2;
o6a{ OO0 CLASS TRTO1P(REF="CTL") BTMB40(REF="g-") /PARAM=GLM;
0 10 20 30 40 S0 60 70 MODEL OS*OSCNSR(1)=TRTO1P BTMB40 TRTO1P*BTMB40;
bTMB cutoff (g+: >=cut, g—group: <cut) —STRATA-BTMBAG:-

HAZARDRATIO 'H1' TRTO1P/DIFF=ALL CL=BOTH,;
LSMEANS estimate of marginal HR always stays between LSMEANS TRTO1P/EXP BYLEVEL;

subgroup HRs and changes depending on the cutoff RUN;
value!

exp{y* (logHR,) + v~ (logHR_)}




I Sample space

Following SME to produce simultaneous Cl for RMST
difference using non-parametric KM estimates

1. Letususev = (v V= ,ng+, vgf, v¢, va) to denote the RMST for g-/g+ and

overall population W|th|n each treatment arm

~ " ~C - Rx " R ~C " 2O ~ R " ~“Rx
Ug- :/0 Sy~ {z‘)df.rg_ :/D Sy (1‘)(31‘.1‘9_ :A bg+{f){ff. Uyt :/0 Syt (1) dt.

2. Obtain the overall Rx and C RMST estimates and claim v ~ N (v. X,)

~ () — -~ 4+ - ~Rx — ~Rx ~ Ra
il'l f— -"".I ?'I . -"".I il'l 1. ?_'I p— .""‘-I' ¥ . -"".I il
) I g +1 g I Yg +1 gt

3. RMST difference u can be written as @ — Ho ~ N (Hv, %, — HX,H") and
simultaneous Cl can be calculated using 3

Uy t'RE—?_*g'_ -1 1 0 0 0 0
u= 1| u | = ?_'ff—rg = 0 0 =1 1 0 0 |xv:=Hxwo.

i3 vz _ € 0o 0 0 0 —1 1
39



I Sample space I

Applying SME to Checkmate-9LA OS

HR for overall: 0.67 &(0.62, 0.64)

Fit following separate Weibull models:

M&M plot 5
— St At s
he(t) = hog(O)exp{BsT} for G={g™, g7} 8 - / F
= B S SRR ¥ S s;
> * a @
O o \ .
95% sim. Cls for RoM (right) and ratio/differenc @ = .
of RMST and 1-year OS rate (below) 3 oot m sy
S o-
Efficacy Weibull model S
O]
. 1.265 3.270 " PD-L1-
(1.058,1.512) (0.814,5.725) r © -
e : PD-L1- @ .
PD-L1+ 1.216 2.840 9 — N!vulumab plus |p|\|mumab_
(1.065,1.388)  (0.930,4.749) 2 PD-L1+ .- B iviinia
Overall 1.234 3.009 S & Overall
(1.109,1.373) (1.500,4.517) © | T I I s
0 5 15 20 3 8 7
1.343 16.0% _ : : = S
PD-L1- (1.068.1.688) (4.0%.28.0%) M¢ = median OS for C :
1-year oDL1s 1.272 13.8% B e e )
survival rate (1.078,1.502) (4.5%,23.2%) -
Sl 1.299 14.7%
(1.135,1.486) (7.3%,22.0%)




