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多重检验，适应性设计等。被授予诺华leading scientist 荣
誉.

加入诺华前在Texas A&M大学获得统计博士学位， 并从事
一年助理教授工作。是Statistics in Biopharmaceutical

Research的副主编，同时在复旦大学担任兼职导师职位。
韦加为博士参与了ICH M11方案模板中估计目标部分的撰写，
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• 复旦大学学报（医学版）副主编

• 国家药监局药品审评中心外审专家和参与临床试验指导原
则撰写

• 上海市区域伦理委员会委员和3家三级医院伦理委员和2家
三级医院临床试验学术会委员

• 中国卫生信息学会卫生统计教学专业委员会副主任委员



community© 2021 DIA, Inc. All rights reserved.

讨论嘉宾

Page 5

William Koh 博士

美国食品药品管理局(FDA)

高级数理统计师

William Koh现为美国食品药品管理局(FDA)的高级数理
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The views and opinions expressed in the following PowerPoint slides are those of 

the individual presenter and should not be attributed to DIA, its directors, officers, 

employees, volunteers, members, chapters, councils, Communities or affiliates, 

or any organization with which the presenter is employed or affiliated.

These PowerPoint slides are the intellectual property of the individual presenter 

and are protected under the copyright laws of the United States of America and 

other countries. Used by permission. All rights reserved. DIA and the DIA logo are 

registered trademarks or trademarks of Drug Information Association Inc. All other 
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Conditional vs Marginal Effects Working Group

Lead: Jiawei Wei (Norvatis)

Members
Björn Bornkamp (Novartis), Ray Lin (Roche), Satrajit Roychoudhury (Pfizer), Hong Tian (BeiGene), Dong 
Xi (Gilead),  Jiajun Xu (J&J), Xin Zhang (Pfizer), Ziqiang Zhao (Novartis)

Objective
We would like to bring the complex concept and methods about conditional and marginal treatment effect into a 
simplified and interpretable way. Potential topics including adjusted or unadjusted analysis; stratified vs unstratified 
hazard ratio; collapsibility and subgroup; p-values; etc. We will give clinically relevant opinions and recommendations 
based on our interpretation and illustrate the idea using some case studies.
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ICH E9 encourages the identification of 

“covariates and factors expected to have 

an important influence on the primary 

variables”

Adjusting for baseline covariates in 

statistical analysis of a randomized 

clinical trial can result in more efficient 

use of the data

ICH E9(R1) requests a precise 

description of the treatment effect 

reflecting the clinical questions posed by 

the trial objective 
• Estimation for a treatment effect should align with 

the estimand
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Continuous endpoint

𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋

Adjustment for baseline covariates can 

• Compensate chance imbalance between treatment groups

• Reduce the variability of the estimated treatment effects (narrower confidence interval, more powerful hypothesis 

testing)

• Still be valid for inference on the average treatment effect even when the regression model dose not fully capture 

the relationships between the outcome, treatment and covariates (Lin 2013)

Does these good properties also apply to

Binary endpoint

logit Pr 𝑌 = 1 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋

Time-to-event endpoint

𝜆 𝑡 = 𝜆0 𝑡 exp 𝛽1𝑍 + 𝛽2𝑋

Note: 𝑍 for treatment; 𝑋 for covariates

Source: Lin, W., 2013. Agnostic notes on regression adjustments to experimental data: Reexamining Freedman’s critique. The Annals of Applied Statistics, 7(1), 

pp.295-318.
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𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋
logit Pr 𝑌 = 1 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋

𝜆 𝑡 = 𝜆0 𝑡 exp 𝛽1𝑍 + 𝛽2𝑋

𝑌 = 𝛽0 + 𝛽1𝑍
logit Pr 𝑌 = 1 = 𝛽0 + 𝛽1𝑍

𝜆 𝑡 = 𝜆0 𝑡 exp 𝛽1𝑍

• Average treatment effect had all patients 

taken treatment vs had they all taken 

control

• Average treatment effect had all patients 

with covariates 𝑋 taken treatment vs had 

they all taken control

• Assuming constant treatment effect 

across subgroups defined by covariates

Marginal treatment effect Conditional treatment effect

Estimation

Estimand

Unadjusted Model Adjusted Model
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Linear Model

• 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋
• Marginal estimand coincides with conditional estimand

• Efficiency gain by reducing residual variance if the covariates are prognostic

Non-linear Model

• logit Pr 𝑌 = 1 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋
• 𝜆 𝑡 = 𝜆0 𝑡 exp 𝛽1𝑍 + 𝛽2𝑋
• Marginal estimand and conditional estimand differ for common efficacy measures, such as

• Odds ratio for binary endpoint

• Hazard ratio for time-to-event endpoint

• Adjusted estimator associated with a larger variance and (point estimate) further away from 
the null
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• Treatment effect in each subgroup defined by gender are identical, Δ = 4 (conditional)

• Treatment effect in the combined population is the same, Δ = 4 (marginal)

Percentage of 

target 

population

Mean of change Mean 

difference

ΔNew drug Placebo

Males 50% 8 4 4

Females 50% 6 2 4

Combined 100% 7 3 4
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• Treatment effect in each subgroup defined by gender are identical, OR=8 (conditional)

• Treatment effect in the combined population is different, OR=4.8 (marginal)

Source: FDA Guideline. (2021), Adjusting for Covariates in Randomized Clinical Trials for Drugs and Biological Products Guidance for Industry

Percentage of 

target 

population

Success rate

Odds ratio
New drug Placebo

Males 50% 80.0% 33.3% 8.0

Females 50% 25.0% 4.0% 8.0

Combined 100% 52.5% 18.7% 4.8
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• Two subgroups (𝑠1 and 𝑠2) have equal 

prevalence

• Odds ratio is constant within each subgroup 

(OR=3)

• In control arm

• Pr 𝑌 = 1 𝑠1, control = 0.1

• Pr(𝑌 = 1|𝑠2, control) varies in [0.1, 0.9]

• In treated arm

• Pr(𝑌 = 1|𝑠1, treated) and 

Pr(𝑌 = 1|𝑠2, treated) can be derived 

through the constant OR

• Marginal odds ratio in the overall population 

is calculated through 

•
Pr 𝑌 = 1 treated / Pr 𝑌 = 0 treated
Pr 𝑌 = 1 control / Pr 𝑌 = 0 control
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Why Marginal Effect Differs From Conditional Effect 
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𝐘|𝐜𝐨𝐧𝐭𝐫𝐨𝐥, 𝐗 = 𝐱

𝐘|𝐭𝐫𝐞𝐚𝐭𝐞𝐝, 𝐗 = 𝐱 𝐘|𝐭𝐫𝐞𝐚𝐭𝐞𝐝

𝐘|𝐜𝐨𝐧𝐭𝐫𝐨𝐥

Conditional 

effect 

Marginal 

effect 

Average over X

Average over X

Average over X 

may not work

e.g., EX
E Y treated, X = x
E Y control, X = x

≠
E Y treated
E Y control

For more comprehensive and formal explanation please refer to: Daniel, R., Zhang, J., & Farewell, D. (2021). Making apples from oranges: 

Comparing noncollapsible effect estimators and their standard errors after adjustment for different covariate sets. Biometrical Journal, 63, 528-557.
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• A randomized placebo-controlled trial to compare drug A to placebo for a 

disease

• Primary endpoint is a binary response variable

• Primary estimand uses the marginal odds ratio ൗ
𝑝1

1−𝑝1

𝑝0

1−𝑝0

• 𝑝1 and 𝑝0 are response rates in treatment and control arms, respectively

• Primary analysis uses the logistic regression including treatment and 

baseline covariates

• Regression coefficient as the estimate of the primary estimand
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• “Estimand uses the marginal odds ratio, but the logistic regression uses the 

conditional odds ratio, which does not align with the estimand”

• “Clarify whether the population-level summaries are marginal odds ratios or 

conditional odds ratios, and provide adequate clinical justifications for these 

choices”

• “For conditional odds ratios, the definitions of the estimand should include the 

variables (and their transformations) on which the odds ratios will condition” 

• “The choice of estimand should inform the choice of analysis approach, not the 

reverse”
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Standardization (estimating standardized outcome distribution 

using covariate specific estimates of the outcome distributions)

1. Model fitting: fit a regression model (e.g., GLM) considering treatment and 

pre-specified baseline covariates

2. Prediction: predict potential outcomes under treatment and under control 

for each patient

3. Average: average treatment effect on predicted outcome

4. Obtain a proper standard error (e.g., delta method, bootstrap)

Estimate Marginal Effect with Covariate Adjustment

Page 22
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Simulation Studies to Understand the Potential Benefit of 
Standardization
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• Data generation
• Generalized linear model for binary outcome: 

Pr 𝑌 = 1 𝑍 = 𝑧, 𝑋 = 𝑥 = 𝑔−1(𝛽0 + 𝛽1𝑧 + 𝛽2𝑥)
• 𝑍 is treatment; 𝑋~𝑁(0,1) is baseline covariate

• 𝑔−1() is the link function where we considered log link and probit link

• Number of simulations: 1000

• Target treatment effect: marginal treatment effect

• Analysis method
• Logistic regression without covariate adjustment

• Logistic regression with covariate adjustment + standardization

• Performance measure
• Robustness of standardization: bias, SE

• Efficiency of standardization: relative SE



communitycommunity

Robustness of Standardization
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• Data generation P Y = 1|𝑍 = 𝑧, 𝑋 = 𝑥 = exp(−| − 1.8 + 1.6𝑧 − 0.6𝑥|)

• Summary measure: odds ratio (OR)

• The standardized estimator is consistent when generalized linear 
model is misspecified in randomized trials (Rosenblum and 
Steingrimsson, 2018)

Method

N=200 N=500 N=1000 N=2000

Bias(SE) Bias(SE) Bias(SE) Bias(SE)

Unadjusted estimator 0.93(3.43) 0.32(1.84) 0.20(1.22) 0.06(0.83)

Standardization 0.95(3.31) 0.33(1.78) 0.21(1.20) 0.06(0.81)
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Efficiency of Standardization
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• Data generation: P Y = 1|𝑍 = 𝑧, 𝑋 = 𝑥 = 𝚽 −𝟏. 𝟖 + 𝟏. 𝟔𝒛 + 𝜷𝟐𝒙
• 𝛽2 = 0, 0.5, 1, 1.5, 2, 4, 6, 8

𝛽𝟐 0 0.5 1 1.5 2 4 6 8

Relative SE

(standardization/unadjusted 

estimator)

1.00 0.95 0.85 0.79 0.70 0.50 0.43 0.39

Adjusting for prognostic covariates improves efficiency for estimating marginal 

treatment effect
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Marginal Estimand Can be Helpful
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• Estimating a marginal effect by standardization approach can in general 

lead to efficiency gain

• The efficiency gain can be sizable when the covariate effect is strong

• Enhance understanding of the strength of the covariate effect before applying the 

approach with pre-specification

• To enhance comparability – apple to apple comparisons across data 

sources

• Interpretation and numerical results is based on the pre-defined population 

of interest
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𝜆 𝑡 = 𝜆0 𝑡 exp(𝜃𝑧) → unadjusted model → marginal estimand

𝜆 𝑡 = 𝜆0 𝑡 exp(𝜃𝑧 + 𝛽𝑥) → adjusted model → conditional estimand

Proportional hazard assumption can only hold for at most one of the above models

If the adjusted model is true, marginal hazard ratio in the overall population varies 

over time

• 𝜃 → 𝜃(𝑡)

• The estimated HR under marginal model can be interpreted as average HR (Rauch et al 

2018)

• The censoring distribution also plays a role in the interpretation, which adds further 

complexity

Challenges on Time-to-event Outcome

Page 28
Rauch, G., Brannath, W., Brückner, M. and Kieser, M., 2018. The Average Hazard Ratio–A Good Effect Measure for Time-to-event Endpoints when the 

Proportional Hazard Assumption is Violated?. Methods of information in medicine, 57(03), pp.089-100.
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A Simulation Approach to Estimate Marginal HR Through 
Covariates Adjusted Model (Daniel et al 2020)
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Step A

• Model fitting: fit a Cox regression model considering treatment and pre-specified baseline covariates 

• Prediction: predict the survival function under treatment and under control for each patient

• Average: average the survival function under treatment and under control:

• Simulation: simulate a set of event times using the average survival functions

Step B

• Same as part A but reverse the censoring indicator (being censored is the event of interest)

Step C

• The observed time is the minimum of the simulated event time (from Part A) and the censoring time 
(from Part B)

• Fit a Cox model on the simulated data using treatment as the only explanatory variable to estimate the 
marginal HR

Step D

• Repeat Step A to Step C to get the empirical distribution of the estimated marginal HR

Daniel, R., Zhang, J., & Farewell, D. (2021). Making apples from oranges: Comparing noncollapsible effect estimators and their standard errors after 

adjustment for different covariate sets. Biometrical Journal, 63, 528-557.
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Simulation Study (Daniel et al 2020)

© 2021 DIA, Inc. All rights reserved. Page 30

Data generation

• 𝜆 𝑡 = 𝛾𝜆𝑡𝛾−1 exp(𝜃𝑧 + 𝛽𝑥𝑥)
• 𝜆 = 0.1, 𝛾 = 1.5

• Uniform enrollment over 2 years

• Administrative censoring at 10 

years

Scenarios

• 𝜃 = 1; 𝛽𝑥 = 0: treatment effect, null 

covariate effect

• 𝜃 = 1; 𝛽𝑥 = 1: treatment effect, 

covariate effect

• The simulation approach to obtain marginal treatment effect is computationally 

expensive. Need to carefully consider study time frame and censoring distribution

• Efficiency gain is not guaranteed for a given study
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Current Practice for Study with Time-to-event Endpoint

Page 31

• Covariate adaptive randomization is commonly used (e.g., stratified permuted block 

randomization) 

• Ensure prognostic factors are balanced between treatment groups

• Factors used in randomization is usually a subset of potential prognostic covariates

• To avoid too many strata

• For study with time-to-event endpoints, the primary analysis is often a stratified analysis 

following the stratified randomization

• Stratified analysis targets a conditional estimand

• Unstratified analysis targets a marginal estimand. Conservative under stratified randomization

• If the conditional estimand is interested, is there any room to improve for efficiency without 

losing robustness?

• Model misspecification is often concerned for conditional model
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Simulation Studies to Evaluate the Efficiency of Covariates 
Adjusted Analysis in a Randomized Study

Page 33

• Scenario 1: stratification factor in randomization is subset of prognostic 
factors

• Data generation: 𝜆 𝑡 = 𝜆0 exp(𝜃𝑧 + 𝛽𝑥𝑥1 + 𝛽𝑥𝑥2
2)

• 𝑧 is the treatment indicator, negative 𝜃 favors treatment

• Prognostic factors: 𝑥1 = 0 or 1 with Pr 𝑥1 = 1 = 0.5; 𝑥2~𝑈(0,1)

• Randomization: stratified by 𝑥1

• Scenario 2: continuous prognostic factor is discretized for randomization
• Data generation: same as scenario 1

• Randomization: stratified by 𝑥1 and discretized 𝑥2 (𝑥2 ≤ 0.5 and 𝑥2 > 0.5)

• Scenario 3: event time is not generated from the Cox type model
• Data generation: 𝑇 = exp 𝜃𝑧 + 𝛽𝑥𝑥1 + 𝛽𝑥𝑥2

2 + 𝜀
• 𝑧, 𝑥1, 𝑥2 are the same as scenario 1; 𝜀~𝐸𝑋𝑃(1)
• Positive 𝜃 favors treatment

• Randomization: stratified by 𝑥1 and discretized 𝑥2 (𝑥2 ≤ 0.5 and 𝑥2 > 0.5)
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Testing Methods
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Log-rank tests

• Unstratified log-rank test
• Type I error is conservative under stratified randomization

• Stratified log-rank test
• Type I error is robust under stratified randomization

• Only account for discrete covariates

Tests based on Cox model

𝜆 𝑡 = 𝜆0 𝑡 exp(𝛼𝑧 + 𝛽1𝑥1 + 𝛽2𝑥2)
• Robust score test (Ye and Shao 2020)

• Type I error is robust to stratified randomization and model misspecification

• Inefficient if the analysis model is very different from the true model

• Wald test
• Type I error is inflated if analysis model is wrong

Ye, T. & Shao J. (2020) Robust Tests for Treatment Effect in Survival Analysis under Covariate-Adaptive Randomization, J.R. Statist. Soc. B 82 (5) 1301-1323
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Scenario 1: Stratification Factor in Randomization is 
Subset of Prognostic Factors
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No covariate effect Moderate covariate effect Strong covariate effect • When there is no covariate effect, 

all methods lead to same result

• The unstratified Log-rank test is 

conservative under stratified 

randomization

• Power is enhanced by adjusting 

the covariate not considered in 

randomization (i.e., robust score 

test)

• Wald test performs well because 

the working model is close to true 

model
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Scenario 2: Continuous Prognostic Factor is Discretized 
for Randomization
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No covariate effect Moderate covariate effect Strong covariate effect

• Power is enhanced by adjusting 

the original continuous covariate 

(i.e., robust score test)

• Adjusting for more prognostic 

factors in stratified log-rank test 

can enhance power
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Scenario 3: Event Time is not Simulated from a Cox Type 
Model
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No covariate effect Moderate covariate effect Strong covariate effect

• Stratified log-rank test is 

superior to the robust score 

test

• Type I error of Wald test is 

severely inflated since the 

working model far from true 

model
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What Works Well for the Time-to-event Analysis
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• Unstratified log-rank test tests a marginal treatment effect. It is conservative under 

stratified randomization

• For additional prognostic factors not part of stratification factors for randomization, 

including these variables into the analysis model may further enhance the study 

power

• Some covariates are continuous in nature, adjusting these covariates using their 

continuous scale may help to improve efficiency

• “All models are wrong”, consider a robust approach to draw valid statistical 

inference

• Stratified log-rank test performs well in general
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Connection with Classic Theory
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“*In proportional hazards model with omitted covariates, ෡𝜷 as an 

estimator of the regression parameter in the true model is 

asymptotically biased toward zero” 
– “Misspecified proportional hazard models” by C.A. Struthers and J.D. Kalbfleisch

• True model: 𝜆 𝑡 = 𝜆0 𝑡 exp(𝛼1𝑧1 + 𝛼2𝑧2)

• Analysis model: 𝜆 𝑡 = 𝜆0 𝑡 exp(𝛽∗𝑧1)
• The covariate 𝑧2 is omitted 

𝜶𝟏 and 𝜷∗ are targeting on different estimand!

* Rephrased from Struthers, C.A. and Kalbfleisch, J.D., 1986. Misspecified proportional hazard models. Biometrika, 73(2), pp.363-369.
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Estimation of treatment effect should align with the target estimand

Conditional estimand and marginal estimand are both population level summary 

of treatment effect and should be clearly differentiated

For binary outcome, standardization procedure is a robust approach to estimate 

the marginal treatment effect

• Efficiency gain can be expected if the adjusted covariates have strong prognostic effect

For time-to-event outcome, standardization procedure is tricky to implement, and 

complicated by censoring and time frame

Stratified log-rank test performs well, robust score test approaches offer good 

promises

Conclusions
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1. 随机临床试验中的协变量调整通常仅限于用于随机化的分层因素：

 如何纳入其他预先指定的协变量进行分析（例如，二元终点/logistic回归）？

 如何正确的分析？

 监管机构是否接受？

© 2021 DIA, Inc. All rights reserved.

Panel Discussion – Question 1
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2. 当前版本的FDA协变量调整指导原则讨论了无条件或边际治疗效应的协变量
调整估计值。与二元终点相比，使用Cox回归分析至事件时间终点的边际风险
比存在一些解释上的挑战，因为比例风险假设无法同时在条件模型和边际模
型中成立，它最多只适用于其中一个。在这种情况下：

 假设条件比例风险模型时，如何正确解释边际风险比？

 大家对替代汇总指标（例如 milestone probability、RMST）有何看法?

© 2021 DIA, Inc. All rights reserved.

Panel Discussion – Question 2
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3. 边际和条件治疗效应之间的差异如何影响临床医生的解释？如何解释两者的
差异？在实践中有什么想法或建议吗？
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