Estimand in Hematologic Oncology Trials

Satrajit Roychoudhury

Statistical Research and Innovation

Pfizer Inc.

ASA Biopharmaceutical Section Regulatory-Industry Statistics Workshop September 24th, 2021

The views and opinions expressed herein are solely those of the presenter and are not necessarily those of Pfizer Inc. Any of these cannot and should not necessarily be construed to represent those of Pfizer Inc. or its affiliates.

Presenting on behalf of Hematology Taskforce: Oncology Estimand Working Group

- Joint work with
 - Steven Sun (Johnson & Johnson) (lead)
 - Hans-Jochen Weber (Novartis)
 - Emily Butler (GlaxoSmithKline)
 - •Kaspar Rufibach (Roche)

Sun, S, Weber, H-J, Butler, E, Rufibach, K, Roychoudhury, S. Estimands in hematologic oncology trials. *Pharmaceutical Statistics*. 2021; 20: 793–805. <u>https://doi.org/10.1002/pst.2108</u>

Challenges in Hematology Oncology

- Number of development programs in Leukemia, Multiple myeloma, and Lymphoma in recent years
- Uniqueness in endpoint, treatment strategy, and interpretation of treatment effect
- Includes broad disease population causes heterogeneous response based on genomic characteristics (large B cell lymphoma vs others)
- Challenging to summarize treatment effect:
 - Long term vs short term effect
 - Effect of induction vs maintenance
 - Responder vs non-responders

Examples	Gallium Study	Multiple Myeloma Study	RATIFY Study
Treatment	Obinutuzumab vs Rituximab in combination with three backbone chemo	Drug X vs Placebo In combination with background therapy	Midostaurin vs Placebo in combination with chemo
Population	Advanced indolent non-Hodgkin's lymphoma	Diagnosed with multiple myeloma and eligible for high-dose therapy	First-line acute myeloid leukemia (AML) with a FLT-3 mutation
Induction and Maintenance Phase	 Induction: Received Obinutuzumab or Rituximab + chemotherapy Maintenance: Achieving response : continue the treatment until disease progression. Stable disease (SD) : No further therapy 	 Induction: Patients have received drug X + background therapy or background therapy only. Followed by a stem cell transplant and consolidation phase Maintenance: Same as randomized until disease progression or unacceptable toxicity 	Patients have received midostaurin or placebo along with chemotherapy for one cycle. If there are definitive evidence of clinically significant residual leukemia, a second cycle of same therapy continues. Induction phase is followed by 4 cycles of consolidation Patients who remained in remission entered a maintenance phase in which they received drug A or placebo.
Primary Endpoint	Progression-free survival	Progression-free survival	Overall survival
Sample Size (events)	1202	690	717

Questions of Clinical Interest

- **Key question**: Is the inclusion of experimental treatment/regimen to SOC improve risk of progression and/or death for patients over SOC
- Is the question above clear?
 - How to handle patients who had considered other anti-cancer therapy before progression?
 - How to handle treatment discontinuation
- Other clinical questions:
 - Impact of induction/consolidation phase and maintenance phase
 - Response in subgroups: e.g., achieved CR or PR in the induction phase.

What is an estimand?

Attributes of an Estimand

Intercurrent Events and Missing Values

Estimand framework allows pre-specification of (some) intercurrent events and handling of intercurrent events

• Results thorough data collection and analytical methods or strategies to handle intercurrent events prior to unblinding

Missing data: *Meaningful data for analysis of an estimand but were not collected*

• After study withdrawal, after trial termination, due to missed visits or measurements

In an estimands framework, it is necessary to:

- Understand the actual reasons for intercurrent events
- Understand the **impact** these events might have on the interpretation of the actual data considering the research question
- **Pre-plan** for them in close cooperation among study team members of different disciplines

Strategies for Handling Intercurrent Events

Sensitivity Analysis vs Supplementary Analysis

Sensitivity Analysis

A series of analyses targeting the same estimand, with differing assumptions to explore the robustness of inferences from the main estimator to <u>deviations from its underlying</u> <u>modeling assumptions</u> and <u>limitations in the</u> <u>data</u>

Supplementary analysis

A general description for analyses that are conducted in addition to the main analysis to provide additional insights into the understanding of the treatment effect. The term describes a broader class of analyses than sensitivity analyses. The need for, and utility of, supplementary analyses should be considered for each trial

Example 1: Gallium Study

Example 2: RATIFY Study

Estimand Framework for Gallium Study

Scientific Question

Will the addition of Obinutuzumab to treatment strategy prolong the time to death and progression regardless of new anti-lymphoma treatments prior to experiencing a PFS event?

Treatment

Induction (6-8 weeks) Received Obinutuzumab or Rituximab + chemotherapy

Maintenance:

Achieving response : continue the treatment until disease progression.

Stable disease (SD) : No further therapy

FL patients as defined by protocol eligibility criteria

Population

Progression Free Survival assessed by investigator

Variable

Estimand Framework for Ratify Study

Scientific Question

Will the addition of Midostaurin to newly diagnosed AML

treatment strategy prolong the time to death regardless of new therapies and SCT Treatment

Induction

One cycle, if no remission, 2nd induction cycle is given

Eligible patients receive SCT Consolidation Up to 4 cycles

Maintenance 12 cycles single-agent First-line AML patients as defined by eligibility criteria

Population

Overall Survival

Variable

Global Product Development

Handling Intercurrent Events

Intercurrent event	Strategy addressing the event
Use of anti-multiple myeloma therapy prior to PFS events	Treatment policy: intercurrent event is ignored
Premature discontinuation of study medication	Used for Gallium and Ratify studies
Possible alternative	Hypothetical: Patients who received anti-cancer therapy are assumed to have the same risk as those who did not receive subsequent anti-cancer therapy

Summarizing Treatment Effect

• Assumption:

- non-informative censoring (missing at random for missing disease assessment or after study withdrawal, loss to follow-up, etc)
- proportional hazard (PH)

• Analysis method:

 Stratified Cox regression model (with stratification factors used in randomization) for without adjustment by other covariates

Design Challenges

	D

How to isolate the treatment benefit in each phase (FDA's concern)?

Overall benefit may be driven by the induction phase only Re-randomization may be necessary to estimate the effect of maintenance

What is appropriate follow-up time?

Can HR capture the benefit of treatment?

Constant proportional hazard at two treatment phases? Patients with stable disease won't get maintenance treatment

Common Sensitivity and Supplementary Analyses for Progression Free Survival

Common Sensitivity and Supplementary Analyses for Overall Survival

Violation of Proportional Hazard (PH)

For NPH, a single measure is often inadequate to summarize the treatment effect

- More than one clinical question or "estimand" need to be answered to understand treatment effect
- Traditional effect like HR and Median are often inadequate

Stepwise approach helps practitioners to provide appropriate summary

- Test for rejecting null
- Assessing PH assumption
- Choice of proper summary based on the variability of PH assumption

Flexible and interpretable measures are required for totality of evidence

NPH is often driven by heterogeneity of effect in disease specific subgroups

- Supplementary analysis are important to understand the treatment effect
- Requires appropriate methodology (principal stratification) for post-hoc subgroup analysis

Global Product Development

Evaluating Stage-wise Effect

- Design with induction and maintenance phase
 - How to isolate the treatment benefit in each phase (FDA's concern)?
- Use of multistate survival model
 - Example: Considers complete remission as intermediate events to investigate the impact of the maintenance phase on the treatment effect
 - Other models are possible based on the design
 - Appropriate summary measures need to be chosen

Use of "While on treatment strategy"

Multi-disciplinary Collaboration is the Key to Success

It is a multi-disciplinary undertaking and should be the subject of discussion between sponsors and regulators

- The estimand framework lends itself to a more transparent way of specifying each objective of a trial and ensuring alignment with the selected estimator/analysis method
- Detailed pre-specification of sensitivity and supplementary analyses are required
- Estimand(s) need to be included in the study protocol and statistical analysis plan (SAP) for the study
- To assess the contribution of each treatment phase of a sequential treatment strategy requires further work

Thank You

