Connecting Instrumental Variable methods for causal inference to the Estimand Framework

Jack Bowden, Bjoern Bornkamp, Ekkehard Glimm & Frank Bretz

7th September 2020

The Estimand Framework

- The ICH E-9 Addendum is forcing trialists to be much more forward thinking and upfront about the issue of Intercurrent Events
- An Intercurrent Event is
 - 'any event occurring between the initial randomization of a patient and the observation of their final outcome which complicates the description and interpretation of the treatment effect'
- Trialists must have an 'Estimand Strategy'
- So how can IV methods help?
- Focus on trials measuring treatment effect on risk/mean difference scale and a binary intercurrent event

Randomization is the ultimate Instrumental Variable

- IV1: Randomization predicts treatment
- IV2: Randomization is independent of all patient characteristics*
- IV3: Randomization can only influence patient outcome via treatment

Randomization is the ultimate Instrumental Variable

- IV1: Randomization predicts treatment
- IV2: Randomization is independent of all patient characteristics*
- IV3: Randomization can only influence patient outcome via treatment
- Randomization still a valid IV even if it does not perfectly predict treatment
- IV methods work without explicit adjustment for confounders
- Treatment here is itself the intercurrent event

Common Estimands expressed using potential outcomes

 Treatment policy strategy: Intercurrent event is deemed to be irrelevant, all patient outcomes are used regardless of whether the intercurrent event occurred or not

-
$$E[Y_i(r=1)] - E[Y_i(r=0)]$$

• **Principal Stratum strategy:** Policy estimand in a subgroup for whom the intercurrent event would not occur in one or more treatment groups. e.g

-
$$E(Y_i(r=1) - Y_i(r=0) | T_i(r=1) = 1, T_i(r=0) = 0)$$

• **Hypothetical strategy**: Estimate the outcome variable for all participants under the hypothetical scenario in which the intercurrent event did not not occur

$$E[Y_i(t=1) - Y_i(t=0)]$$

Identification of estimands using IVs

- Treatment policy: Requires valid randomization
- Principal Stratum: Identified with valid IV + Monotonicity
 - No 'Defiers', for whom $T_i(1)=0$ and $T_i(0)=1$
- Hypothetical: Identified with a valid IV + Homogeneity
 - Av. effect of *removing* treatment from the **treated** is the same
 - Av. effect of giving treatment the untreated is the same
- IV-based estimates for both estimands equal
- True when effect on RD, RR but not OR scale (Clark and Windmeijer, 2010)

Application to a hypothetical 'industry' setting

- Placebo controlled RCT, no access to treatment in control arm
- Some non-adherence in treatment arm: take a **policy** stance w.r.t to this
- Main intercurrent event is 'intermediate response' measured by a relevant binary biomarker B (assumed mechanism of action)
- If a treatment arm patient does not 'respond', we may believe that the drug has failed
- If a control arm patient has a positive biomarker response, we may believe that their future health outcomes have been improved or worsened in line with those who took and responded to treatment
- Naive 'Responder analysis': E[Y|B=1] E[Y|B=0]
- No causal interpretation, want to go beyond this

Contemporary trial setting: intercurrent event = biomarker response

- Treatment predicts the likelihood of being a biomarker responder (B=1), as does baseline biomarker value (Bo)
- Randomization a valid IV if it affects outcome Y through B only (exclusion restriction holds)
- Violation if treatment effects Y through alternative mechanism

	Compliance Classes	B(r=1)	B(r=0)	Proportion	Estimated by
	Placebo only Responders	0	1	$\pi_{\it pr}$	0 (Monotonicity)
	Never Responders	0	0	π_{nr}	$\hat{Pr}(B=0 R=1)$
	Always Responders	1	1	π_{ar}	$\hat{Pr}(B=1 R=0)$
7	reatment only Responders	1	0	π_{tr}	$1-\widehat{\pi_{ar}}-\widehat{\pi_{nr}}$
T	reatment arm Responders	1	0/1	$\pi_{tr} + \pi_{ar}$	$\hat{Pr}(B=1 R=1)$
		- /	`	/ \>	

Policy Estimand: $E[Y_i(r=1)-Y_i(r=0)]$ Hypothetical Estimand: $E[Y_i(b=1)-Y_i(b=0)]$

Principal Stratum Estimand: $E[Y_i(r=1)-Y_i(r=0)|B(1)=1,B(0)=0]$

Principal Stratum Estimand:

(Bornkamp & Bermann) $E[Y_i(r=1)-Y_i(r=0)|B(1)=1]$

Simulated trial example: n=10,000, E(Y)=50%

- \bullet Proportion of biomarker responders in the treatment control group is 77% and 16%
- Responder analysis suggests biomarker responders have a 10% reduced risk of Y
- All other estimand estimates suggests treatment or biomarker response increases risk of Y (2-4%)

Estimand	Estimate	S.E(model)	S.E(boot)	p-value
Treatment				
	0.022	0.010	0.010	0.028
Policy	0.0==	0.020	0.020	
Responder TR-ACE &	-0.103	0.010	0.010	$< 2 \times 10^{-16}$
Hypothetical	0.035	0.016	0.016	0.029
PS(BB)	0.025	0.012	0.011	0.028

 Understand results by relaxing Homogeneity and Exclusion Restriction for Hypothetical estimand

Relaxing the homogengeity assumption

- Requires a baseline covariate B₀ that
 - (i) Differentially predicts biomarker response across treatment arms
 - (ii) Does not modulate treatment effect

Relaxing the Exclusion restriction

 Can use same approach to allow for direct and indirect trt effects under the homogeneity assumption

Y/	Model allowing for direct and indirect effects of treatment $Y_i B_i, R_i, U = \beta_0 + \psi B_i + \alpha R_i + U_i$					
Estimand	Potential outcome contrast	Parameter form				
Hypothetical estimand allowing for direct effect	E[Y(r;1)-Y(r;0)]	ψ				
Direct effect	$ \begin{bmatrix} E[Y(r;1)-Y(r;0)] \\ E[Y(1;b)-Y(0;b)] \end{bmatrix} $	α				
	TSLS estimation					
$E[B R,B_0] = \beta 0$	$+\beta BB_0+\beta RR+\beta BRB_0R$	Stage 1 model				
$E[Y \hat{B},R] = \beta_{y_0}$	$+\psi \hat{B} + \alpha R + \beta_{B_0} B_0$	Stage 2 model				

- Essentially causal mediation without the 'sequential ignorability' assumption (Small, 2012)
- The true data generating model!

Full results

Estimand	Estimate	S.E(model)	S.E(boot)	p-value
Treatment				
Policy	0.022	0.010	0.010	0.028
Responder TR-ACE &	-0.103	0.010	0.010	$< 2 \times 10^{-16}$
Hypothetical	0.035	0.016	0.016	0.029
PS(BB)	0.025	0.012	0.011	0.028

Hypothetical estimand sensitivity analyses

Biomarker effect heterogeneity								
ψ_b	-0.034	0.031	0.032	0.286				
ψ_{ar}	-0.202	0.097	0.099	0.041				
Direct and indirect treatment effects								
ψ	-0.295	0.135	0.139	0.034				
α	0.201	0.083	0.086	0.019				

- Trt exerts a negative direct effect on Y
- Trt exerts a positive effect through biomarker response
- Can be disentangled with a two-parameter causal model

Discussion

- IV methods have an important role to play within the estimand framework
- Estimands can be identified without invoking 'no unmeasured confounders' assumption
 - see e.g. regression adjustment, propensity scores etc...
- Although most IV frameworks developed by imagining treatment as the intercurrent event (academic legacy), the idea can be extended to any event that sits between randomization and outcome
 - e.g. biomarker response, disease progression
- However, the further the intercurrent event is from initiation of treatment the harder the IV assumptions are to justify
 - Exclusion restriction especially
- This talk is a summary of a tutorial paper soon to be submitted.
 Watch this space!

Some references

Clarke P, Windmeijer F. Identification of causal effects on binary outcomes using structural mean models. *Biostatistics* 2010. **11**: 756–770

Small D. Mediation analysis without sequential ignorability: using baseline covariates interacted with random assignment as instrumental variables. *Journal of Statistical Research* 2012, **46**: 91–103

Bornkamp B, Bermann G. Estimating the Treatment Effect in a Subgroup Defined by an Early Post-Baseline Biomarker Measurement in Randomized Clinical Trials With Time-To-Event Endpoint. *Statistics in Biopharmaceutical Research* 2019.