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Estimands in Oncology WG 
 initiated and led by Evgeny Degtyarev (Novartis) and Kaspar Rufibach (Roche), first TC Feb 2018 

 main purpose: ensure common understanding and consistent definitions for key estimands in Oncology across industry

 31 members (14 from Europe and 17 from US) representing 19 companies

 established as EFSPI SIG for Estimands in Oncology in Nov 2018

 close collaboration with regulators from EMA, FDA, China, Taiwan and Canada

2



Estimands in Oncology WG
Communication plan for 2019
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MAR APR MAY JUN JUL AUG SEP

whitepaper(s) and presentations at statistical and clinical conferences

• plans to further engage with Clinical community beyond ASCO

DAGStat (Munich)

Session with 4 WG talks

LiDS (Pittsburgh)

Session with 3 WG talks 
+ EMA discussant

ASCO (Chicago)

3 abstracts submitted in 
collaboration with KOLs 
and industry clinicians

PSI (London)

2 WG talks

DIA (San Diego)

1 WG talk

ISCB (Leuven)

2 abstracts submitted

JSM (Denver)

Session with 4 WG talks + FDA 
discussant

ASA Biopharm
Section Regulatory-Industry 
Statistics Workshop 
(Washington)

Session with 2 WG 
talks + FDA talk

ASCO: American Society of Clinical Oncology
LiDS: Lifetime Data Science (ASA Section)



Causal-Subteam

• Kaspar Rufibach (Roche), lead

• Vera Beckers (Abbvie)

• Björn Bornkamp (Novartis)

• Audrey Boruvka (Roche)

• Andreas Brandt (BfARM)

• Marie-Laure Casadebaig (Celgene)

• Feng Liu (AstraZeneca)

• Yi Liu (Nektar)
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• Juliane Manitz (EMD Serono)

• Emily Martin (EMD Serono)

• Devan Mehrotra (Merck)

• Alan Phillips (ICON)

• Satrajit Roychoudhury (Pfizer)

• Anja Schiel (NoMA)

• An Vandebosch (Janssen)



Overview

• Clinical questions 

• Estimation of principal stratum effects

• Criticisms

• Summary
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Clinical questions

• Short term tumour shrinkage versus overall survival
• Short term tumour shrinkage can be a good predictor of overall survival

• What is the treatment effect versus control (on overall survival) in 
patients that have a tumour shrinkage < X % at Y weeks if on the 
investigational treatment?
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Clinical questions

• Biologic treatments and antidrug antibodies (ADA)
• For biologic treatments (e.g. cancer immunotherapies)  ADAs might form and 

may (or may not) have a neutralizing effect on the treatment

• What is the treatment effect  versus control (e.g. on overall survival) 
in patients that develop ADAs if on the investigational treatment?
• NB: The control might be a non-biologic drug (i.e. ADAs will not form)
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Clinical questions

• Cancer prevention trial
• Do patients that develop cancer (if on investigational treatment and if on 

control treatment) have a different cancer severity than if given the control 
treatment?

• Treatment switching
• What is the treatment effect in patients that do not switch (if on 

investigational and if on control treatment)?
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Clinical questions

• Commonality
• Evaluate the treatment effect in the subgroup of patients where a specific 

post-randomization event would (or would not) occur

• Challenge: Post-randomization event itself may be affected by treatment
• Randomization cannot be relied upon to ensure comparable groups on investigational 

treatment and control  Selection bias
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Clinical questions

• Commonality
• Evaluate the treatment effect in the subgroup of patients where a specific 

post-randomization event would (or would not) occur

• Challenge: Post-randomization event itself may be affected by treatment
• Randomization cannot be relied upon to ensure comparable groups on investigational 

treatment and control  Selection bias

• Class of questions is quite frequent in oncology
• See Section 7.6.5 of the EMA anticancer guidance on „Analyses based on a 

grouping of patients on an outcome of treatment“
• Highlights problematic nature of naive analyses

• Encourages search for „unexpected findings“ based on such exploratory analyses (by 
each treatment arm; not formally comparing arms due to non-randomized nature)
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Principal Stratification Estimands

• Concept introduced in Frangakis & Rubin (2002)
• Conceptual idea: Potential outcomes 

S(0) and S(1) are unaffected by treatment 

• Determine treatment effect in subset(s) (principal 
strata) of population defined by S(0) and S(1)

• Can classify every patient in one of these four cells (= principal strata)
• E.g. S is tumour shrinkage < X % at Y weeks or presence of ADAs

11

S(0) = 0 S(0) = 1

S(1) = 0

S(1) = 1

• Note: One of S(0) or S(1) is 
observed for an individual 
patient the other unobserved

S – occurence of postbaseline event
S(0) – potential outcome control
S(1) – potential outcome treatment



Principal Stratification Estimands

• By itself the principal stratum formulation does not provide a solution
• Just a way of framing a particular problem

• But: Provides a clear inferential target (treatment effect in principal strata)

• Easier to discuss assumptions etc if inferential target is clear

• Determination of treatment effects in strata requires assumptions!
• E.g. Principal stratum membership is not observed

• Let‘s illustrate with the ADA example in more detail
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Consider ADA example in more detail

X – Baseline Characteristics
Z – Treatment 

Z=0 control, Z=1 treatment
S – Development of ADAs
T – Survival time
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X

Z S

T

• Quantity of interest?

• Survival time distributions for patients under treatment and control that 
develop ADAs, if taking treatment (S(1) = 1)

• In potential outcome notation: Compare 
T(1) | S(1) = 1 versus T(0) | S(1) = 1

Potential outcomes
T(z) – Potential survival time
S(z) – ADA presence post-
baseline



ADA example

• In potential outcome notation: Compare 
T(1) | S(1) = 1 versus T(0) | S(1) = 1

• e.g. estimate survival functions P(T(1) > t|S(1) = 1) and P(T(0) > t|S(1) = 1) and 
derive a difference based on those
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ADA example

• In potential outcome notation: Compare 
T(1) | S(1) = 1 versus T(0) | S(1) = 1

• e.g. estimate survival functions P(T(1) > t|S(1) = 1) and P(T(0) > t|S(1) = 1) and 
derive a difference based on those

• Rather easy to derive an estimate for P(T(1) > t|S(1) = 1): This was 
observed on the treatment arm
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ADA example

• In potential outcome notation: Compare 
T(1) | S(1) = 1 versus T(0) | S(1) = 1

• e.g. estimate survival functions P(T(1) > t|S(1) = 1) and P(T(0) > t|S(1) = 1) and 
derive a difference based on those

• Rather easy to derive an estimate for P(T(1) > t|S(1) = 1): This was 
observed on the treatment arm

• How to derive estimate of P(T(0) > t|S(1) = 1)?
• Unclear whether patients on the control arm would have developed ADAs if 

given treatment

• Even worse: No patient on control will develop ADAs (i.e. S(0) = 0 for all)

• No one-size-fits-all solution in the Frangakis and Rubin (2002) paper
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ADA example: Full Bayesian estimation

• We know that

p(T(0)) = π p(T(0)| S(1) = 1) + (1 - π) p(T(0)| S(1) = 0) 

where π = P(S(1) = 1) can be estimated from the treatment arm 
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ADA example: Full Bayesian estimation

• We know that

p(T(0)) = π p(T(0)| S(1) = 1) + (1 - π) p(T(0)| S(1) = 0) 

where π = P(S(1) = 1) can be estimated from the treatment arm 

• Densities (or parameters describing the densities)
• p(T(0)| S(1) = 1) and p(T(0)| S(1) = 0) are not identified based on the data

 even for „infinite“  sample size, likelihood will not contract to a single point
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ADA example: Full Bayesian estimation

• We know that

p(T(0)) = π p(T(0)| S(1) = 1) + (1 - π) p(T(0)| S(1) = 0) 

where π = P(S(1) = 1) can be estimated from the treatment arm 

• Densities (or parameters describing the densities)
• p(T(0)| S(1) = 1) and p(T(0)| S(1) = 0) are not identified based on the data

 even for „infinite“  sample size, likelihood will not contract to a single point

• For a proper prior also the posterior will be proper
• For some parameters more information might be available for others less
 Need to evaluate impact of „weakly-informative“ priors carefully

• See Magnussen et al. (2018) for a related approach/application
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ADA example: Utilizing covariates

• Assume one can find all covariates X such that
• Conditional on covariates X, T(0) and S(1) are independent: T(0) ⊥ S(1) | X

• Principal ignorability, see Ding et al. 2017, Feller et al. 2017

• If this is true the conditional distribution p(T(0) | S(1), X) = p(T(0) | X)
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ADA example: Utilizing covariates

• Assume one can find all covariates X such that
• Conditional on covariates X, T(0) and S(1) are independent: T(0) ⊥ S(1) | X

• Principal ignorability, see Ding et al. 2017, Feller et al. 2017

• If this is true the conditional distribution p(T(0) | S(1), X) = p(T(0) | X)

• Estimation
• p(T(0) | X) can be estimated on the control group, and averaging with respect 

to p(X | S(1) = 1) provides an estimate of p(T(0) | S(1) = 1) (standardization)

• Alternative estimation strategies
• Build a model for S(1) = 1 on the treatment arm (depending on X), and multiply impute 

S(1) for the control arm  Combine estimate with Rubin‘s rules

• Matching on X and „standard“ analysis
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ADA example: Utilizing covariates

• Case-specific whether one would be willing to make this assumption
• Principal ignorability is an untestable assumption (independence assumption 

„across worlds“); sensitivity analyses possible, see Ding et al. (2017)

• If S(0) would be predictive of S(1) further analyses/assumptions would be 
possible  in this case as S(0) = 0 for all patients
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Criticisms

• Complication: Benefit-risk analyses for principal strata
• Typical analysis strategies do not clearly identify the population of patients in 

the principal stratum. How to perform safety analyses?

• Hernán & Scharfstein (2018) 
• “... subgroup that cannot be clinically identified ...”

• Scharfstein (2018) 
• „... Principal stratification is scientifically interesting but just too assumption-

laden to be primary ...“

• “... Lowers the level of evidence. ...”

• Also controversially discussed in the causal inference community
• See Pearl (2011)  Principal stratification overused
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Summary

• Clinically relevant questions
• Sometimes assumptions too strong to answer based on the data at hand

• But: Incorrect (& potentially mis-leading) analyses are already performed for 
these questions  utilizing causal inference techniques will raise the level of 
discussion on the questions and possible assumptions

• Due to assumptions required for identification, the principal stratum 
strategy might not often be part of the primary estimand

• Could still be important to contribute to an “overall” picture of the 
drug’s properties
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